Nothing Special   »   [go: up one dir, main page]

Skip to main content

Spatio-Temporal Video Segmentation

  • Chapter
  • First Online:
Advances in Spatio-Temporal Segmentation of Visual Data

Part of the book series: Studies in Computational Intelligence ((SCI,volume 876))

Abstract

This Chapter considers approaches to video skimming into semantically-consistent segments of video streams, which are highly redundant and weakly structured data. In such a way, one of the promising ways is spatial-temporal segmentation as frame partitions represent certain spatial image content. Also, properties were formulated and proved which ultimately determine the characteristics of permissible segmentation transformations when searching for a compromise between over and undo segmentation. Temporal segmentation of multidimensional time series has been examined, which enables structuring video streams and significantly reduce the amount of data that will require online processing. For this, multidimensional time series analysis theory was used, since a completely natural video representation is a sequence of frames, followed by their combination into groups of frames (shots) with the same content. It was shown that various approaches can be used to detect shots with homogeneous characteristics, which are based on VAR models, exponential smoothing and predictive models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thounaojam DM, Trivedi A, Manglem Singh K, Roy S (2014) A survey on video segmentation. Intelligent computing, networking, and informatics. In: Mohapatra D et al (eds) Advances in intelligent systems and computing, vol 243. Springer, New Delhi, pp 903–912

    Google Scholar 

  2. Wang W, Shen J, Yang R et al (2018) Saliency-aware video object segmentation. IEEE Trans Pattern Anal Mach Intell 40(1):20–33

    Article  Google Scholar 

  3. Xu B, Niu Y (2018) Accurate object segmentation for video sequences via temporal-spatial-frequency saliency model. IEEE Intell Syst 33(1):18–28

    Article  MathSciNet  Google Scholar 

  4. Haller E, Leordeanu M (2017) Unsupervised object segmentation in video by efficient selection of highly probable positive features. In: Proceedings 2017 IEEE International Conference on Computer Vision (ICCV) IEEE CS CPS, pp 5095–5103

    Google Scholar 

  5. Mashtalir S, Mikhnova O (2017) Detecting significant changes in image sequences. Multimedia forensics and security. In: Hassanien A et al (eds) Intelligent systems reference library, vol 115. Springer, Cham, pp 161–191

    Google Scholar 

  6. Jiang H, Zhang G, Wang H, Bao H (2015) Spatio-temporal video segmentation of static scenes and its applications. IEEE Trans Multimedia 17(1):3–15

    Article  Google Scholar 

  7. Wang W, Shen J, Shao L (2018) Video salient object detection via fully convolutional networks. IEEE Trans Image Process 27(1):38–49

    Article  MathSciNet  MATH  Google Scholar 

  8. Mashtalir S, Mashtalir V (2016) Sequential temporal video segmentation via spatial image partitions. In: Proceedings 2016 IEEE first international conference on Data Stream Mining and Processing (DSMP), pp 239–242

    Google Scholar 

  9. Mashtalir S, Mashtalir V, Stolbovyi M (2018) Representative based clustering of long multivariate sequences with different lengths. In: 2018 IEEE second international conference on Data Stream Mining & Processing (DSMP), pp 545–548

    Google Scholar 

  10. Mashtalir V, Mikhnova E, Shlyakhov V, Yegorova E (2006) A novel metric on partitions for image segmentation. In: Proceedings IEEE international conference on video and signal based surveillance (AVSS), p 18

    Google Scholar 

  11. Sun J (2015) Streaming analysis of track data from video. In: Proceedings of the SPIE 9473, Geospatial informatics, fusion, and motion video analytics V, 947302

    Google Scholar 

  12. Liwicki S, Zafeiriou SP, Pantic M (2015) Online Kernel slow feature analysis for temporal video segmentation and tracking. IEEE Trans Image Process 24(10):2955–2970

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang L, Qiao Y, Tang X (2014) Video action detection with relational dynamic-poselets. In: Computer Vision, ECCV2014, pp 565–580

    Chapter  Google Scholar 

  14. Tziakos I, Cavallaro A, Xu L-Q (2009) Video event segmentation and visualisation in non-linear subspace. Pattern Recogn Lett 30:123–131

    Article  Google Scholar 

  15. Liu Y, Zhanga D, Lua G, Ma W-Y (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282

    Article  Google Scholar 

  16. Feng L, Bhanu B (2016) Semantic concept co-occurrence patterns for image annotation and retrieval. IEEE Trans Pattern Anal Mach Intell 38(4):785–799

    Article  Google Scholar 

  17. Nagasaka A, Tanaka Y (1991) Automatic video indexing and full-video search for object appearances. IFIP Transactions: proceedings of the IFIP TC2/WG 2.6 second working conference on visual database systems, vol A-7. North-Holland Publishing Co., Budapest, Amsterdam, pp 113–127

    Google Scholar 

  18. Lin G-S, Chang J-F (2013) Detection of frame duplication forgery in videos based on spatial and temporal analysis. Int J Pattern Recognit Artif Intell 26(7):1–18

    MathSciNet  Google Scholar 

  19. Gong Y, Liu X (2000) Video summarization using singular value decomposition. In: Proceedings of IEEE conference on computer vision and pattern recognition, Hilton Head Island, vol 2. IEEE CS, Washington, pp 174–180

    Google Scholar 

  20. Hu Z, Mashtalir SV, Tyshchenko OK, Stolbovyi MI (2017) Video scenes’ matching via various length of multidimensional time sequences. Int J Intell Syst Appl 9(11):10–16

    Google Scholar 

  21. Hu Z, Mashtalir SV, Tyshchenko OK, Stolbovyi MI (2018) Clustering matrix sequences based on the iterative dynamic time deformation procedure. Int J Intell Syst Appl 10(7):66–73

    Google Scholar 

  22. Billings A, Chen S (1989) Extended model set, global data and threshold model identification of severely non-linear systems. Int J Control 50:1897–1923

    Article  MATH  Google Scholar 

  23. Rathod GI, Nikam DA (2013) An algorithm for scene boundary detection and key frame extraction using histogram difference. Int J Emerg Technol Adv Eng 3(8):155–163

    Google Scholar 

  24. Bezdek JC, Keller J, Krisnapuram R, Pal NR (2005) Fuzzy models and algorithms for pattern recognition and image processing. Springer, NY, p 776

    MATH  Google Scholar 

  25. Li X-H, Zhan Y-Z, Ke J, Zheng H-W (2011) Scene retrieval based on fuzzy evolutionary AINet and hybrid features. Comput Hum Behav 27(5):1571–1578

    Article  Google Scholar 

  26. Vázquez-Martín R, Bandera A (2013) Spatio-temporal feature-based keyframe detection from video scenes using spectral clustering. Pattern Recogn Lett 34(7):770–779

    Article  Google Scholar 

  27. Liu B, He X (2015) Multiclass semantic video segmentation with object-level active. In: IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp 4286–4294

    Google Scholar 

  28. Isermann R (1984) Process fault detection based modeling and estimating methods—a survey. Automatica 20(4):387–404

    Article  MATH  Google Scholar 

  29. Nikiforov IV (1991) Sequential detection of changes in stochastic processes. In: Prep. 9-th IFAC/IFORS symposium on identification and system parameter estimation, Budapest, vol 1

    Google Scholar 

  30. Badavas PC (1993) Real-time statistical process control. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  31. Pouliezos AD, Stavrakakis GS (1994) Real time fault monitoring of industrial processes. Kluver Academic Publishers, Dordrecht

    Book  MATH  Google Scholar 

  32. Juselis K (1994) The cointegrated VAR-model. Oxford University Press, NY

    Google Scholar 

  33. Rastrigin LA (1974) Systems of extremal control. Nauka, Moscow

    Google Scholar 

  34. Kaczmarz S (1993) Approximate solution of system of linear equations. Int J Control 57(5):1269–1271

    Article  MathSciNet  MATH  Google Scholar 

  35. Chow EY, Willsky AS (1980) Issues in the development of a general design algorithm for reliable failure detection. In: Proceedings of the 19-th IEEE Conference on Decis Ant Contr – Albuquerque

    Google Scholar 

  36. Brown RG (1963) Smoothing, forecasting, and prediction of discrete time series. Prentice Hall, NY

    Google Scholar 

  37. Leach DW, Trigg AG (1967) Exponential smoothing with an adaptive response rate. Oper Res Q 18(1):53–59

    Article  Google Scholar 

  38. Montgomery DC, Johnson IA, Gardiner JS (1990) Forecasting and time series analysis. McGraw-Hill, NY

    Google Scholar 

  39. Bodyanskiy Y, Rudenko O (2004) Artificial neural networks: architectures, learning, applications. TELETECH, Kharkov (in Russia)

    Google Scholar 

  40. Cichocki A, Unbehauen R (1993) Neural networks for optimization and signal processing. Teubner, Stuttgart

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Mashtalir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mashtalir, S., Mashtalir, V. (2020). Spatio-Temporal Video Segmentation. In: Mashtalir, V., Ruban, I., Levashenko, V. (eds) Advances in Spatio-Temporal Segmentation of Visual Data. Studies in Computational Intelligence, vol 876. Springer, Cham. https://doi.org/10.1007/978-3-030-35480-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35480-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35479-4

  • Online ISBN: 978-3-030-35480-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics