Abstract
In recent years, with the development of aerospace technology, we use more and more images captured by satellites to obtain information. But a large number of useless raw images, limited data storage resource and poor transmission capability on satellites hinder our use of valuable images. Therefore, it is necessary to deploy an on-orbit semantic segmentation model to filter out useless images before data transmission. In this paper, we present a detailed comparison on the recent deep learning models. Considering the computing environment of satellites, we compare methods from accuracy, parameters and resource consumption on the same public dataset. And we also analyze the relation between them. Based on experimental results, we further propose a viable on-orbit semantic segmentation strategy. It will be deployed on the TianZhi-2 satellite which supports deep learning methods and will be lunched soon.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 4, 321–331 (1988)
Meyer, F., Beucher, S.: Morphological segmentation. J. Vis. Commun. Image Represent. 1, 21–46 (1990)
Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary and region segmentation of objects in ND images. In: 2001 Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV 2001, vol. 1, pp. 105–112 (2001)
Kampffmeyer, M., Salberg, A. B., Jenssen, R.: Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9 (2016)
Volpi, M., Tuia, D.: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55(2), 881–893 (2017)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017)
Ball, J.E., Anderson, D.T., Chan, C.S.: Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community. J. Appl. Remote Sens. 11(4), 042609 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234–241. Springer, Cham (2015)
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2881–2890 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Huang, B., Lu, K., Audebert, N., Khalel, A., Tarabalka, Y., Malof, J., Lefèvre, S.: Large-scale semantic classification: outcome of the first year of Inria aerial image labeling benchmark. In: IEEE International Geoscience and Remote Sensing Symposium-CIGARSS 2018 (2018)
Lu, K., Sun, Y., Ong, S.H.: Dual-resolution U-Net: building extraction from aerial images. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 489–494. IEEE (2018)
Bischke, B., Helber, P., Folz, J., Borth, D., Dengel, A., Waterman, M.S.: Multi-task learning for segmentation of building footprints with deep neural networks. arXiv preprint arXiv:1709.05932 (2017)
Holschneider, M., Kronland-Martinet, R., Morlet, J., Tchamitchian, P.: A real-time algorithm for signal analysis with the help of the wavelet transform. In: Wavelets, pp. 286–297. Springer, Heidelberg (1990)
Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems, pp. 109–117 (2011)
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P.: Can semantic labeling methods generalize to any city? The Inria aerial image labeling benchmark. In: IEEE International Symposium on Geoscience and Remote Sensing (IGARSS) (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, J., Li, L., Lin, Y., Wu, F., Zhao, J. (2020). A Comparison and Strategy of Semantic Segmentation on Remote Sensing Images. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds) Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD 2019. Advances in Intelligent Systems and Computing, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-030-32456-8_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-32456-8_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32455-1
Online ISBN: 978-3-030-32456-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)