Nothing Special   »   [go: up one dir, main page]

Skip to main content

Ordered Median Location Problems

  • Chapter
  • First Online:
Location Science

Abstract

This chapter analyzes the ordered median location problem in three different frameworks: continuous, discrete and networks; where some classical but also new results have been collected. For each solution space we study general properties that lead to solution algorithms. In the continuous case, we present two solution approaches for the planar case with polyhedral norms (the most intuitive case) and a novel approach applicable for the general case based on a hierarchy of semidefinite programs that can approximate up to any degree of accuracy the solution of any ordered median problem in finite dimension spaces with polyhedral or p-norms. We also cover the problem on networks deriving finite dominating sets for some particular classes of λ parameters and showing the impossibility of finding a FDS with polynomial cardinality for general lambdas in the multifacility case. Finally, we present a covering based formulation for the capacitated discrete ordered median problem with binary assignment which is rather promising in terms of gap and CPU time for solving this family of problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ben-Israel A, Iyigun C (2010) A generalized Weiszfeld method for the multi-facility location problem. Oper Res Lett 38:207–214

    Article  MathSciNet  MATH  Google Scholar 

  • Berman O, Kalcsics J, Krass D, Nickel S (2009) The ordered gradual covering location problem on a network. Discrete Appl Math 157:3689–3707

    Article  MathSciNet  MATH  Google Scholar 

  • Blanco V, Ben Ali SEH, Puerto J (2013) Minimizing ordered weighted averaging of rational functions with applications to continuous location. Comput Oper Res 40:1448–1460

    Article  MathSciNet  MATH  Google Scholar 

  • Blanco V, Ben Ali SEH, Puerto J (2014) Revisiting several problems and algorithms in continuous location with lp norms. Comput Optim Appl 58:563–595

    Article  MathSciNet  MATH  Google Scholar 

  • Blanco V, Puerto J, Ben-Ali SEH (2016) Continuous multifacility ordered median location problems. Eur J Oper Res 250(1):56–64

    Article  MathSciNet  MATH  Google Scholar 

  • Blanco V, Puerto J, Salmerón, R (2018) A general framework for locating hyperplanes to fitting set of points. Comput Oper Res 95:172–193

    Article  MathSciNet  MATH  Google Scholar 

  • Blanquero R, Carrizosa E (2009) Continuous location problems and big triangle small triangle: constructing better bounds. J Global Optim 45:389–402

    Article  MathSciNet  MATH  Google Scholar 

  • Boland N, Domínguez-Marín P, Nickel S, Puerto J (2006) Exact procedures for solving the discrete ordered median problem. Comput Oper Res 33:3270–3300

    Article  MATH  Google Scholar 

  • Brimberg J, Hansen P, Mladenovic N, Taillard ED (2000) Improvement and comparison of heuristics for solving the uncapacitated multisource Weber problem. Oper Res 48:444–460

    Article  Google Scholar 

  • Deleplanque S, Labbé M, Ponce D, Puerto J (2019) An extended version of a branch-price-and-cut procedure for the discrete ordered median problem. Informs J Comput. https://doi.org/10.1287/ijoc.2019.0915

  • Domínguez-Marín P, Nickel S, Hansen P, Mladenović N (2005) Heuristic procedures for solving the discrete ordered median problem. Ann Oper Res 136:145–173

    Article  MathSciNet  MATH  Google Scholar 

  • Drezner Z (2007) A general global optimization approach for solving location problems in the plane. J Global Optim 37:305–319

    Article  MathSciNet  MATH  Google Scholar 

  • Drezner Z, Nickel S (2009a) Constructing a DC decomposition for ordered median problems. J Global Optim 45:187–201

    Article  MathSciNet  MATH  Google Scholar 

  • Drezner Z, Nickel S (2009b) Solving the ordered one-median problem in the plane. Eur J Oper Res 195:46–61

    Article  MathSciNet  MATH  Google Scholar 

  • Durier R, Michelot C (1985) Geometrical properties of the Fermat-Weber problem. Eur J Oper Res 20:332–343

    Article  MathSciNet  MATH  Google Scholar 

  • Edelsbrunner H (1987) Algorithms in combinatorial geometry. Springer, New York

    Book  MATH  Google Scholar 

  • Espejo I, Marín A, Puerto J, Rodríguez-Chía AM (2009) A comparison of formulations and solution methods for the minimum-envy location problem. Comput Oper Res 36:1966–1981

    Article  MATH  Google Scholar 

  • Espejo I, Rodríguez-Chía AM, Valero C (2009) Convex ordered median problem with lp-norms. Comput Oper Res 36:2250–2262

    Article  MathSciNet  MATH  Google Scholar 

  • Francis R, Lowe T, Tamir A (2000) Aggregation error bounds for a class of location models. Oper Res 48:294–307

    Article  MathSciNet  MATH  Google Scholar 

  • Grzybowski J, Nickel S, Pallaschke D, Urbański R (2011) Ordered median functions and symmetries. Optimization 60:801–811

    Article  MathSciNet  MATH  Google Scholar 

  • Hakimi S (1964) Optimal location of switching centers and the absolute centers and medians of a graph. Oper Res 12:450–459

    Article  MATH  Google Scholar 

  • Hakimi S, Labbé M, Schmeichel E (1992) The Voronoi partition of a network and its applications in location theory. Orsa J Comput 4:412–417

    Article  MathSciNet  MATH  Google Scholar 

  • Hardy GH, Littlewood JE, Pólya G (1952) Inequalities, 2nd ed. Cambridge University Press, Cambridge,

    MATH  Google Scholar 

  • Hooker J, Garfinkel R, Chen C (1991) Finite dominating sets for network location problems. Oper Res 39:100–118

    Article  MathSciNet  MATH  Google Scholar 

  • Jibetean D, de Klerk E (2006) Global optimization of rational functions: a semidefinite programming approach. Math Program 106:93–109

    Article  MathSciNet  MATH  Google Scholar 

  • Kalcsics J, Nickel S, Puerto J, Tamir A (2002) Algorithmic results for ordered median problems. Oper Res Lett 30:149–158

    Article  MathSciNet  MATH  Google Scholar 

  • Kalcsics J, Nickel S, Puerto J (2003) Multifacility ordered median problems on networks: a further analysis. Networks 41:1–12

    Article  MathSciNet  MATH  Google Scholar 

  • Kalcsics J, Nickel S, Puerto J, Rodríguez-Chía AM (2010a) Distribution systems design with role dependent objectives. Eur J Oper Res 202:491–501

    Article  MathSciNet  MATH  Google Scholar 

  • Kalcsics J, Nickel S, Puerto J, Rodríguez-Chía AM (2010b) The ordered capacitated facility location problem. TOP 18:203–222

    Article  MathSciNet  MATH  Google Scholar 

  • Kalcsics J, Nickel S, Puerto J, Rodríguez-Chía AM (2015) Several 2-facility location problems on networks with equity objectives. Networks 65(1):1–9

    Article  MathSciNet  Google Scholar 

  • Kim-Chuan T, Todd MJ, Tutuncu RH (2006) On the implementation and usage of SDPT3–a matlab software package for semidefinite-quadratic-linear programming, version 4.0. Optimization software. http://www.math.nus.edu.sg/~mattohkc/sdpt3/guide4-0-draft.pdf

  • Labbé M, Ponce D, Puerto J (2017) A comparative study of formulations and solution methods for the discrete ordered p-median problem. Comput Oper Res 78:230–242

    Article  MathSciNet  MATH  Google Scholar 

  • Lasserre J (2009) Moments, positive polynomials and their applications. Imperial College Press, London

    Book  Google Scholar 

  • López-de-los-Mozos M, Mesa JA, Puerto J (2008) A generalized model of equality measures in network location problems. Comput Oper Res 35:651–660

    Article  MathSciNet  MATH  Google Scholar 

  • Marín A, Nickel S, Puerto J, Velten S (2009) A flexible model and efficient solution strategies for discrete location problems. Discrete Appl Math 157:1128–1145

    Article  MathSciNet  MATH  Google Scholar 

  • Marín A, Nickel S, Velten S (2010) An extended covering model for flexible discrete and equity location problems. Math Method Oper Res 71:125–163

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez-Merino LI, Albareda-Sambola M, Rodríguez-Chía AM (2017) The probabilistic p-center problem: planning service for potential customers. Eur J Oper Res 262:509–520

    Article  MathSciNet  MATH  Google Scholar 

  • McCormick S (2005) Submodular function minimization. In: Discrete optimization. Elsevier, Amsterdam, pp 321–391

    Chapter  Google Scholar 

  • Nickel S (2001) Discrete ordered weber problems. In: Operations research proceedings 2000. Selected papers of the symposium, Dresden, OR 2000, September 9–12, 2000. Springer, Berlin, pp 71–76

    Google Scholar 

  • Nickel S, Puerto J (1999) A unified approach to network location problems. Networks 34:283–290

    Article  MathSciNet  MATH  Google Scholar 

  • Nickel S, Puerto J (2005) Location theory: A unified approach. Springer, Berlin

    MATH  Google Scholar 

  • Nickel S, Puerto J, Rodríguez-Chía AM, Weissler A (2005) Multicriteria planar ordered median problems. J Optimiz Theory App 126:657–683

    Article  MathSciNet  MATH  Google Scholar 

  • Okabe A, Boots B, Sugihara K (1992) Spatial tessellations: concepts and applications of Voronoı̆ diagrams. In: Wiley series in probability and mathematical statistics: applied probability and statistics. Wiley, Chichester. With a foreword by D. G. Kendall

    Google Scholar 

  • Papini P, Puerto J (2004) Averaging the k largest distances among n: k-centra in Banach spaces. J Math Anal Appl 291:477–487

    Article  MathSciNet  MATH  Google Scholar 

  • Puerto J (2008) A new formulation of the capacitated discrete ordered median problems with {0,  1} assignment. In: Operations research proceedings 2007. Selected papers of the annual international conference of the German Operations Research Society (GOR), Saarbrücken, September 5–7, 2007. Springer, Berlin, pp 165–170

    Google Scholar 

  • Puerto J, Fernández F (2000) Geometrical properties of the symmetric single facility location problem. J Nonlinear Convex Anal 1:321–342

    MathSciNet  MATH  Google Scholar 

  • Puerto J, Rodríguez-Chía AM (2005) On the exponential cardinality of FDS for the ordered p-median problem. Oper Res Lett 33:641–651

    Article  MathSciNet  MATH  Google Scholar 

  • Puerto J, Tamir A (2005) Locating tree-shaped facilities using the ordered median objective. Math Program 102:313–338

    Article  MathSciNet  MATH  Google Scholar 

  • Puerto J, Ramos AB, Rodríguez-Chía AM (2011) Single-allocation ordered median hub location problems. Comput Oper Res 38:559–570

    Article  MathSciNet  MATH  Google Scholar 

  • Puerto J, Ramos AB, Rodríguez-Chía AM (2013) A specialized branch & bound & cut for single-allocation ordered median hub location problems. Discrete Appl Math 161:2624–2646

    Article  MathSciNet  MATH  Google Scholar 

  • Puerto J, Pérez-Brito D, García-González C (2014) A modified variable neighborhood search for the discrete ordered median problem. Eur J Oper Res 234:61–76

    Article  MathSciNet  MATH  Google Scholar 

  • Puerto J, Ricca F, Scozzari A (2018) Extensive facility location problems on networks: an updated review. TOP 26(2):187–226

    Article  MathSciNet  MATH  Google Scholar 

  • Redondo JL, Marín A, Ortigosa PM (2016) A parallelized Lagrangean relaxation approach for the discrete ordered median problem. Ann Oper Res 246(1–2):253–272

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez-Chía AM, Nickel S, Puerto J, Fernández FR (2000) A flexible approach to location problems. Math Method Oper Res 51:69–89

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez-Chía AM, Puerto J, Pérez-Brito D, Moreno JA (2005) The p-facility ordered median problem on networks. TOP 13:105–126

    Article  MathSciNet  MATH  Google Scholar 

  • Rodríguez-Chía AM, Espejo I, Drezner Z (2010) On solving the planar k-centrum problem with Euclidean distances. Eur J Oper Res 207:1169–1186

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenbaum R (1950) Subadditive functions. Duke Math J 17:227–247

    Article  MathSciNet  MATH  Google Scholar 

  • Rozanov M, Tamir A (2018) The nestedness property of location problems on the line. TOP 26:257–282

    Article  MathSciNet  MATH  Google Scholar 

  • Ruszczynski A, Syski W (1986) On convergence of the stochastic subgradient method with on-line stepsize rules. J Math Anal Appl 114(2):512–527

    Article  MathSciNet  MATH  Google Scholar 

  • Schnepper T (2017) Location problems with k-max functions-modelling and analysing outliers in center problems. In: PhD dissertation, Universität Wuppertal, Germany

    Google Scholar 

  • Schnepper T, Klamroth K, Stiglmayr M, Puerto J (2019) Exact algorithms for handling outliers in center location problems on networks using k-max functions. Eur J Oper Res 273(2):441–451

    Article  MathSciNet  MATH  Google Scholar 

  • Schöbel A, Scholz D (2010) The big cube small cube solution method for multidimensional facility location problems. Comput Oper Res 37:115–122

    Article  MathSciNet  MATH  Google Scholar 

  • Turner L, Hamacher HW (2011) On universal shortest paths. In: Operations research proceedings 2010, pp 313–318

    Article  MATH  Google Scholar 

  • Turner L, Ehrgott M, Hamacher HW (2015) On the generality of the greedy algorithm for solving matroid base problems. Discrete Appl Math 195:114–128

    Article  MathSciNet  MATH  Google Scholar 

  • Ward J, Wendell R (1985) Using block norms for location modeling. Oper Res 33:1074–1090

    Article  MathSciNet  MATH  Google Scholar 

  • Yager R (1988) On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans Syst Man Cybern 18:183–190

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors were partially supported by projects MTM2016-74983-C2-01/02-R (Ministry of Economy and Competitiveness∖FEDER, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio M. Rodríguez-Chía .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Puerto, J., Rodríguez-Chía, A.M. (2019). Ordered Median Location Problems. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds) Location Science. Springer, Cham. https://doi.org/10.1007/978-3-030-32177-2_10

Download citation

Publish with us

Policies and ethics