Abstract
In this chapter, we describe several biomedical applications of geometric functional data analysis methods for modeling probability density functions, amplitude and phase components in functional data, and shapes of curves and surfaces. We begin by reviewing parameterization-invariant Riemannian metrics and corresponding simplifying square-root transforms for each case. These tools allow for computationally efficient implementations of statistical procedures on the appropriate representation spaces, including computation of the Karcher mean and exploration of variability via principal component analysis. We then showcase applications of these tools in multiple biomedical case studies based on various datasets including Glioblastoma Multiforme tumors, Diffusion Tensor Magnetic Resonance Image-based white matter tracts and fractional anisotropy functions, electrocardiogram signals, endometrial tissue surfaces and subcortical surfaces in the brain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bakas, S., Zeng, K., Sotiras, A., Rathore, S., Akbari, H., Gaonkar, B., Rozycki, M., Pati, S., Davatzikos, C.: GLISTRboost: combining multimodal MRI segmentation, registration, and biophysical tumor growth modeling with gradient boosting machines for glioma segmentation. In: BrainLes, pp. 144–155 (2015)
Bauer, M., Bruveris, M., Harms, P., Møller-Andersen, J.: A numerical framework for Sobolev metrics on the space of curves. SIAM J. Imag. Sci. 10(1), 47–73 (2017)
Bharath, K., Kurtek, S., Rao, A., Baladandayuthapani, V.: Radiologic image-based statistical shape analysis of brain tumours. J. R. Stat. Soc. Ser. C 67(5), 1357–1378 (2018)
Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distributions. Bull. Calcutta Math. Soc. 35, 99–109 (1943)
Bousseljot, R., Kreiseler, D., Schnabel, A.: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB uber das internet. Biomedizinische Technik 40(1), S317–S318 (1995)
Brosens, I., Puttemans, P., Campo, R., Gordts, S., Kinkel, K.: Diagnosis of endometriosis: Pelvic endoscopy and imaging techniques. Best Pract. Res. Clin. Obstet. Gynaecol. 18(2), 285–303 (2004)
Čencov, N.N.: Statistical Decision Rules and Optimal Inference. American Mathematical Society, Providence (1982)
Clifford, G.D., Azuaje, F., McSharry, P.: Advanced Methods And Tools for ECG Data Analysis. Artech House, Inc., Boston (2006)
De Sousa, F., Melo, E., Vermeulen, L., Fessler, E., Medema, J.P.: Cancer heterogeneity—a multifaceted view. EMBO Rep. 14(8), 686–695 (2013)
Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, New York (1998)
Garg, A., Appel-Cresswell, S., Popuri, K., McKeown, M.J., Beg, M.F.: Morphological alterations in the caudate, putamen, pallidum, and thalamus in Parkinson’s disease. Front. Neurosci. 9, 101 (2015)
Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Mark, R., Mietus, J., Moody, G., Peng, C., Stanley, H.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)
Goldsmith, J., Crainiceanu, C.M., Caffo, B.S., Reich, D.S.: Penalized functional regression analysis of white-matter tract profiles in multiple sclerosis. NeuroImage 57(2), 431–439 (2011)
Goldsmith, J., Scheipl, F., Huang, L., Wrobel, J., Gellar, J., Harezlak, J., Mclean, M., Swihart, B., Crainiceanu, L.X.C., Reiss, P., Chen, Y., Greven, S., Huo, L., Kunda, M.G., Park, S.Y., Miller, D., Staicu, A.M.: Refund: Regression with Functional Data (2018). https://cran.r-project.org/web/packages/refund/
Holland, E.C.: Glioblastoma multiforme: the terminator. Proc. Natl. Acad. Sci. 97(12), 6242–6244 (2000)
Ismail, M., Keynton, R., Mostapha, M., Eltanboly, A., Casanova, M., Gimel’farb, G., El-Baz, A.: Studying autism spectrum disorder with structural and diffusion magnetic resonance imaging: A survey. Front. Hum. Neurosci. 10 (2016)
Jacobson, S., Jacobson, J., Sokol, R., Martier, S., Chiodo, L.: New evidence for neurobehavioral effects of in utero cocaine exposure. J. Pediatr. 129(4) pp. 581–590 (1996)
Jacobson, S., Jacobson, J., Sokol, R., Chiodo, L., Corobana, R.: Maternal age, alcohol abuse history, and quality of parenting as moderators of the effects of prenatal alcohol exposure on 7.5-year intellectual function. Alcohol. Clin. Exp. Res. 28, 1732–1745 (2004)
Jermyn, I.H., Kurtek, S., Klassen, E., Srivastava, A.: Elastic shape matching of parameterized surfaces using square root normal fields. In: European Conference on Computer Vision, pp. 804–817 (2012)
Jermyn, I.H., Kurtek, S., Laga, H., Srivastava, A.: Elastic Shape Analysis of Three-Dimensional Objects. Morgan & Claypool Publishers, San Rafael (2017)
Joshi, S., Klassen, E., Srivastava, A., Jermyn, I.: Removing shape-preserving transformations in square-root elastic (SRE) framework for shape analysis of curves. In: EMMCVPR, pp. 387–398 (2007)
Joshi, S., Xie, Q., Kurtek, S., Srivastava, A., Laga, H.: Surface shape morphometry for hippocampal modeling in Alzheimer’s disease. In: International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8 (2016)
Just, N.: Improving tumour heterogeneity MRI assessment with histograms. Br. J. Cancer 111(12), 2205 (2014)
Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30(5), 509–541 (1977)
Kass, R.E., Vos, P.W.: Geometrical Foundations of Asymptotic Inference, vol. 908. Wiley, New York (2011)
Kendall, D.G.: Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)
Kurtek, S.: A geometric approach to pairwise Bayesian alignment of functional data using importance sampling. Electron. J. Stat. 11(1), 502–531 (2017)
Kurtek, S., Needham, T.: Simplifying transforms for general elastic metrics on the space of plane curves. ArXiv:1803.10894v1 (2018)
Kurtek, S., Klassen, E., Ding, Z., Jacobson, S., Jacobson, J., Avison, M., Srivastava, A.: Parameterization-invariant shape comparisons of anatomical surfaces. IEEE Trans. Med. Imaging 30(3), 849–858 (2011)
Kurtek, S., Srivastava, A., Klassen, E., Ding, Z.: Statistical modeling of curves using shapes and related features. J. Am. Stat. Assoc. 107(499), 1152–1165 (2012)
Kurtek, S., Su, J., Grimm, C., Vaughan, M., Sowell, R., Srivastava, A.: Statistical analysis of manual segmentations of structures in medical images. Comput. Vis. Image Underst. 117, 1036–1050 (2013)
Kurtek, S., Wu, W., Christensen, G., Srivastava, A.: Segmentation, alignment and statistical analysis of biosignals with application to disease classification. J. Appl. Stat. 40(6), 1270–1288 (2013)
Kurtek, S., Samir, C., Ouchchane, L.: Statistical shape model of elastic endometrial tissue surfaces. In: International Conference on Pattern Recognition Applications and Methods (2014)
Kurtek, S., Xie, Q., Samir, C., Canis, M.: Statistical model for simulation of deformable elastic endometrial tissue shapes. Neurocomputing 173(P1), 36–41 (2016)
Laga, H., Xie, Q., Jermyn, I.H., Srivastava, A.: Numerical inversion of SRNF maps for elastic shape analysis of genus-zero surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2451–2464 (2017)
Le, H.: Locating Frechet means with application to shape spaces. Adv. Appl. Probab. 33(2), 324–338 (2001)
Maier-Hein, K.H., Neher, P.F., Houde, J.C., Côté, M.A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.C., Lin, Y.C., Ji, Q., Reddick, W.E., Glass, J.O., Chen, D.Q., Feng, Y., Gao, C., Wu, Y., Ma, J., Renjie, H., Li, Q., Westin, C.F., Deslauriers-Gauthier, S., González, J.O.O., Paquette, M., St-Jean, S., Girard, G., Rheault, F., Sidhu, J., Tax, C.M.W., Guo, F., Mesri, H.Y., Dávid, S., Froeling, M., Heemskerk, A.M., Leemans, A., Boré, A., Pinsard, B., Bedetti, C., Desrosiers, M., Brambati, S., Doyon, J., Sarica, A., Vasta, R., Cerasa, A., Quattrone, A., Yeatman, J., Khan, A.R., Hodges, W., Alexander, S., Romascano, D., Barakovic, M., Auría, A., Esteban, O., Lemkaddem, A., Thiran, J.P., Cetingul, H.E., Odry, B.L., Mailhe, B., Nadar, M.S., Pizzagalli, F., Prasad, G., Villalon-Reina, J.E., Galvis, J., Thompson, P.M., Requejo, F.D.S., Laguna, P.L., Lacerda, L.M., Barrett, R., Dell’Acqua, F., Catani, M., Petit, L., Caruyer, E., Daducci, A., Dyrby, T.B., Holland-Letz, T., Hilgetag, C.C., Stieltjes, B., Descoteaux, M.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1349 (2017)
Marron, J., Ramsay, J.O., Sangalli, L.M., Srivastava, A.: Functional data analysis of amplitude and phase variation. Stat. Sci. 30(4), 468–484 (2015)
Oishi, K., Mielke, M., Albert, M., Lyketsos, C., Mori, S.: DTI analyses and clinical applications in Alzheimer’s disease. In: Advances in Alzheimer’s Disease, vol. 2, pp. 525–534 (2011)
Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)
Ramsay, J., Silverman, B.: Functional Data Analysis. Springer, Berlin (2005)
Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters. In: Breakthroughs in Statistics, pp. 235–247. Springer, Berlin (1992)
Robinson, D.T.: Functional Data Analysis and Partial Shape Matching in the Square Root Velocity Framework. Ph.D. thesis, Florida State University, Tallahassee (2012)
Saha, A., Banerjee, S., Kurtek, S., Narang, S., Lee, J., Rao, G., Martinez, J., Bharath, K., Rao, A., Baladandayuthapani, V.: DEMARCATE: Density-based magnetic resonance image clustering for assessing tumor heterogeneity in cancer. NeuroImage Clin. 12, 132–143 (2016)
Samir, C., Kurtek, S., Srivastava, A., Canis, M.: Elastic shape analysis of cylindrical surfaces for 3D/2D registration in endometrial tissue characterization. IEEE Trans. Med. Imaging 33(5), 1035–1043 (2014)
Srivastava, A., Jermyn, I.H., Joshi, S.H.: Riemannian analysis of probability density functions with applications in vision. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)
Srivastava, A., Klassen, E., Joshi, S.H., Jermyn, I.H.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1415–1428 (2011)
Srivastava, A., Wu, W., Kurtek, S., Klassen, E., Marron, J.S.: Registration of functional data using Fisher-Rao metric. ArXiv:1103.3817v2 (2011)
Srivastave, A., Klassen, E.P.: Functional and Shape Data Analysis. Springer, Berlin (2016)
Wang, L., Beg, M.F., Ratnanather, J.T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G., Miller, M.I.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans. Med. Imaging 26(4), 462–470 (2007)
Xie, Q., Kurtek, S., Le, H., Srivastava, A.: Parallel transport of deformations in shape space of elastic surfaces. In: International Conference on Computer Vision (2013)
Yavariabdi, A., Samir, C., Bartoli, A., Ines, D.D., Bourdel, N.: Contour-based TVUS-MR image registration for mapping small endometrial implants. In: Abdominal Imaging, vol. 8198, pp. 145–154 (2013)
Younes, L.: Computable elastic distance between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)
Younes, L.: Elastic distance between curves under the metamorphosis viewpoint. ArXiv:1804.10155 (2018)
Acknowledgements
We thank Arvind Rao for sharing the GBM tumor dataset, and acknowledge Joonsang Lee, Juan Martinez, Shivali Narang and Ganesh Rao for their roles in processing the MRIs used to produce the tumor outlines. We thank Zhaohua Ding for providing the DT-MRI tract dataset used in Sect. 24.4.3 and the dataset of subcortical structures for ADHD classification. Finally, we thank Chafik Samir for providing the endometrial tissue surfaces. Shariq Mohammed would like to acknowledge Institutional Research Support from The University of Michigan. Additionally, this work was supported in part by grants NSF DMS-1613054, NSF CCF-1740761, NSF CCF-1839252 and NIH R37-CA214955.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Matuk, J., Mohammed, S., Kurtek, S., Bharath, K. (2020). Biomedical Applications of Geometric Functional Data Analysis. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-31351-7_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31350-0
Online ISBN: 978-3-030-31351-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)