Abstract
Recently, Gripon and Berrou (2011) have investigated a recurrently connected Willshaw-type auto-associative memory with block coding, a particular sparse coding method, reporting a significant increase in storage capacity compared to earlier approaches. In this study we verify and generalize their results by implementing bidirectional hetero-associative networks and comparing the performance of various retrieval methods both with block coding and without block coding. For iterative retrieval in networks of size \(n=4096\) our data confirms that block-coding with the so-called “sum-of-max” strategy performs best in terms of output noise (which is the normalized Hamming distance between stored and retrieved patterns), whereas the information storage capacity of the classical models cannot be exceeded because of the reduced Shannon information of block patterns. Our simulation experiments also provide accurate estimates of the maximum pattern number that can be stored at a tolerated noise level of 1%. It is revealed that block coding is most beneficial for sparse activity where each pattern has only \(k\sim \log n\) active units.
The authors acknowledge support by the state of Baden-Württemberg through bwHPC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albus, J.: A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971)
Aliabadi, B.K., Berrou, C., Gripon, V., Jiang, X.: Storing sparse messages in networks of neural cliques. IEEE Trans. Neural Netw. Learn. Syst. 25, 980–989 (2014)
Bentz, H., Hagstroem, M., Palm, G.: Information storage and effective data retrieval in sparse matrices. Neural Netw. 2, 289–293 (1989)
Bogacz, R., Brown, M., Giraud-Carrier, C.: Model of familiarity discrimination in the perirhinal cortex. J. Comput. Neurosci. 10, 5–23 (2001)
Braitenberg, V.: Cell assemblies in the cerebral cortex. In: Heim, R., Palm, G. (eds.) Theoretical Approaches to Complex Systems. Lecture Notes in Biomathematics, vol. 21, pp. 171–188. Springer, Heidelberg (1978). https://doi.org/10.1007/978-3-642-93083-6_9
Braitenberg, V., Schüz, A.: Anatomy of the Cortex: Statistics and Geometry. Springer, Berlin (1991). https://doi.org/10.1007/978-3-662-02728-8
Buckingham, J., Willshaw, D.: Performance characteristics of the associative net. Netw.: Comput. Neural Syst. 3, 407–414 (1992)
Chechik, G., Meilijson, I., Ruppin, E.: Synaptic pruning in development: a computational account. Neural Comput. 10(7), 1759–1777 (1998)
Chklovskii, D., Mel, B., Svoboda, K.: Cortical rewiring and information storage. Nature 431, 782–788 (2004)
Cover, T., Thomas, J.: Elements of Information Theory. Wiley, New York (1991)
Dayan, P., Willshaw, D.: Optimising synaptic learning rules in linear associative memory. Biol. Cybern. 65, 253–265 (1991)
Fay, R., Kaufmann, U., Knoblauch, A., Markert, H., Palm, G.: Combining visual attention, object recognition and associative information processing in a neurobotic system. In: Wermter, S., Palm, G., Elshaw, M. (eds.) Biomimetic Neural Learning for Intelligent Robots. LNCS (LNAI), vol. 3575, pp. 118–143. Springer, Heidelberg (2005). https://doi.org/10.1007/11521082_8
Ferro, D., Gripon, V., Jiang, X.: Nearest neighbour search using binary neural networks. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), July 2016
Fransen, E., Lansner, A.: A model of cortical associative memory based on a horizontal network of connected columns. Netw. Comput. Neural Syst. 9, 235–264 (1998)
Gardner, E.: Maximum storage capacity in neural networks. Europhys. Lett. 4, 481–485 (1987)
Gardner-Medwin, A.: The recall of events through the learning of associations between their parts. Proc. Roy. Soc. London Ser. B 194, 375–402 (1976)
Greene, D., Parnas, M., Yao, F.: Multi-index hashing for information retrieval. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 722–731 (1994)
Gripon, V., Berrou, C.: Sparse neural networks with large learning diversity. IEEE Trans. Neural Netw. 22(7), 1087–1096 (2011)
Gripon, V., Berrou, C.: Nearly-optimal associative memories based on distributed constant weight codes. In: Proceedings of the IEEE Information Theory and Applications Workshop (ITA), pp. 269–273 (2012)
Gripon, V., Heusel, J., Löwe, M., Vermet, F.: A comparative study of sparse associative memories. J. Stat. Phys. 164(1), 105–129 (2016)
Gripon, V., Löwe, M., Vermet, F.: Associative memories to accelerate approximate nearest neighbor search. Appl. Sci. 8(9), 1676 (2018)
Hebb, D.: The Organization of Behavior: A Neuropsychological Theory. Wiley, New York (1949)
Honegger, K., Campbell, R., Turner, G.: Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J. Neurosci. 31(33), 11772–11785 (2011)
Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)
Huyck, C., Orengo, V.: Information retrieval and categorization using a cell assembly network. Neural Comput. Appl. 14(4), 282–289 (2005)
Johansson, C., Lansner, A.: Imposing biological constraints onto an abstract neocortical attractor network model. Neural Comput. 19(7), 1871–1896 (2007)
Kanerva, P.: Sparse Distributed Memory. MIT Press, Cambridge (1988)
Knoblauch, A.: Optimal matrix compression yields storage capacity 1 for binary willshaw associative memory. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP - 2003. LNCS, vol. 2714, pp. 325–332. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44989-2_39
Knoblauch, A.: Neural associative memory with optimal Bayesian learning. Neural Comput. 23(6), 1393–1451 (2011)
Knoblauch, A.: Efficient associative computation with discrete synapses. Neural Comput. 28(1), 118–186 (2016)
Knoblauch, A., Körner, E., Körner, U., Sommer, F.: Structural plasticity has high memory capacity and can explain graded amnesia, catastrophic forgetting, and the spacing effect. PLoS One 9(5), e96485 (2014). 1–19
Knoblauch, A., Palm, G.: Iterative retrieval and block coding in auto- and hetero-associative memory. Submitted to Neural Computation (2019)
Knoblauch, A., Palm, G., Sommer, F.: Memory capacities for synaptic and structural plasticity. Neural Comput. 22(2), 289–341 (2010)
Knoblauch, A., Sommer, F.: Structural plasticity, effectual connectivity, and memory in cortex. Front. Neuroanat. 10(63), 1–20 (2016)
Kohonen, T.: Associative Memory: A System Theoretic Approach. Springer, Heidelberg (1977). https://doi.org/10.1007/978-3-642-96384-1
Kryzhanovsky, B., Litinskii, L., Mikaelian, A.: Vector-neuron models of associative memory. In: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541; IJCNN-04), vol. 2, pp. 909–914 (2004)
Lansner, A.: Associative memory models: from the cell-assembly theory to biophysically detailed cortex simulations. Trends Neurosci. 32(3), 178–186 (2009)
Lansner, A., Ekeberg, O.: A one-layer feedback artificial neural network with a Bayesian learning rule. Int. J. Neural Syst. 1(1), 77–87 (1989)
Lansner, A., Holst, A.: A higher order Bayesian neural network with spiking units. Int. J. Neural Syst. 7(2), 115–128 (1996)
Laurent, G.: Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3, 884–895 (2002)
Marr, D.: A theory of cerebellar cortex. J. Physiol. 202(2), 437–470 (1969)
Marr, D.: Simple memory: a theory for archicortex. Philos. Trans. Roy. Soc. London Ser. B 262, 24–81 (1971)
Mu, X., Artiklar, M., Watta, P., Hassoun, M.: An RCE-based associative memory with application to human face recognition. Neural Process. Let. 23, 257–271 (2006)
Palm, G.: On associative memories. Biol. Cybern. 36, 19–31 (1980)
Palm, G.: Neural Assemblies: An Alternative Approach to Artificial Intelligence. Springer, Berlin (1982). https://doi.org/10.1007/978-3-642-81792-2
Palm, G.: Novelty: Information and Surprise. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29075-6
Palm, G.: Neural associative memories and sparse coding. Neural Netw. 37, 165–171 (2013)
Palm, G., Sommer, F.: Information capacity in recurrent McCulloch-Pitts networks with sparsely coded memory states. Network 3, 177–186 (1992)
Palm, G., Sommer, F.: Associative data storage and retrieval in neural nets. In: Domany, E., van Hemmen, J., Schulten, K. (eds.) Models of Neural Networks III, pp. 79–118. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-0723-8_3
Prager, R., Fallside, F.: The modified Kanerva model for automatic speech recognition. Comput. Speech Lang. 3, 61–81 (1989)
Pulvermüller, F.: The Neuroscience of Language: On Brain Circuits of Words and Serial Order. Cambridge University Press, Cambridge (2003)
Rehn, M., Sommer, F.: Storing and restoring visual input with collaborative rank coding and associative memory. Neurocomputing 69, 1219–1223 (2006)
Rolls, E.: A theory of hippocampal function in memory. Hippocampus 6, 601–620 (1996)
Sacramento, J., Burnay, F., Wichert, A.: Regarding the temporal requirements of a hierarchical Willshaw network. Neural Netw. 25, 84–93 (2012)
Schwenker, F., Sommer, F., Palm, G.: Iterative retrieval of sparsely coded associative memory patterns. Neural Netw. 9, 445–455 (1996)
Sommer, F., Palm, G.: Improved bidirectional retrieval of sparse patterns stored by Hebbian learning. Neural Netw. 12, 281–297 (1999)
Steinbuch, K.: Die Lernmatrix. Kybernetik 1, 36–45 (1961)
Wichert, A.: Cell assemblies for diagnostic problem-solving. Neurocomputing 69, 810–824 (2006)
Willshaw, D., Buneman, O., Longuet-Higgins, H.: Non-holographic associative memory. Nature 222, 960–962 (1969)
Wu, F.: The potts model. Rev. Mod. Phys. 54, 235–268 (1982)
Yao, Z., Gripon, V., Rabbat, M.: A GPU-based associative memory using sparse neural networks. In: Proceedings of the IEEE International Conference on High-Performance-Computing and Simulation (HPCS), pp. 688–692 (2014)
Acknowledgments
The authors are grateful to Friedhelm Schwenker and Fritz Sommer for valuable discussions. The authors acknowledge support by the state of Baden-Württemberg through bwHPC.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Knoblauch, A., Palm, G. (2019). Bidirectional Associative Memory with Block Coding: A Comparison of Iterative Retrieval Methods. In: Tetko, I., Kůrková, V., Karpov, P., Theis, F. (eds) Artificial Neural Networks and Machine Learning – ICANN 2019: Theoretical Neural Computation. ICANN 2019. Lecture Notes in Computer Science(), vol 11727. Springer, Cham. https://doi.org/10.1007/978-3-030-30487-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-30487-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30486-7
Online ISBN: 978-3-030-30487-4
eBook Packages: Computer ScienceComputer Science (R0)