Nothing Special   »   [go: up one dir, main page]

Skip to main content

The Stable Model Semantics of Normal Fuzzy Linguistic Logic Programs

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11683))

Included in the following conference series:

  • 1868 Accesses

Abstract

Fuzzy linguistic logic programming is a framework for representing and reasoning with linguistically-expressed human knowledge. It is well known that allowing the representation and the manipulation of negation is an important feature for many real-world applications. In this work, we extend the framework by allowing negation connectives to occur in rule bodies, resulting in normal fuzzy linguistic logic programs, and study the stable model semantics of such logic programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Le, V.H., Liu, F., Tran, D.K.: Fuzzy linguistic logic programming and its applications. Theor. Pract. Logic Programm. 9(3), 309–341 (2009)

    Article  MathSciNet  Google Scholar 

  2. Le, V.H., Tran, D.K.: Further results on fuzzy linguistic logic programming. J. Comput. Sci. Cybern. 30(2), 139–147 (2014)

    Google Scholar 

  3. Le, V.H., Liu, F.: Tabulation proof procedures for fuzzy linguistic logic programming. Int. J. Approximate Reasoning 63, 62–88 (2015)

    Article  MathSciNet  Google Scholar 

  4. Nguyen, C.H., Wechler, W.: Hedge algebras: an algebraic approach to structure of sets of linguistic truth values. Fuzzy Sets Syst. 35, 281–293 (1990)

    Article  MathSciNet  Google Scholar 

  5. Nguyen, C.H., Wechler, W.: Extended hedge algebras and their application to fuzzy logic. Fuzzy Sets Syst. 52, 259–281 (1992)

    Article  MathSciNet  Google Scholar 

  6. Le, V.H., Tran, D.K.: Extending fuzzy logics with many hedges. Fuzzy Sets Syst. 345, 126–138 (2018)

    Article  MathSciNet  Google Scholar 

  7. Le, V.H., Liu, F., Tran, D.K.: Mathematical fuzzy logic with many dual hedges. In: The Fifth Symposium on Information and Communication Technology (SoICT), pp. 7–13 (2014)

    Google Scholar 

  8. Zadeh, L.A.: A theory of approximate reasoning. In: Hayes, J.E., Michie, D., Mikulich, L.I., (eds.) Machine Intelligence, vol. 9, pp. 149–194. Wiley (1979)

    Google Scholar 

  9. Bellman, R.E., Zadeh, L.A.: Local and fuzzy logics. In: Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh, pp. 283–335. World Scientific Publishing Co., Inc, River Edge (1996)

    Google Scholar 

  10. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Book  Google Scholar 

  11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  12. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  13. Madrid, N., Ojeda-Aciego, M.: On the existence and unicity of stable models in normal residuated logic programs. Int. J. Comput. Math. 89(3), 310–324 (2012)

    Article  MathSciNet  Google Scholar 

  14. Cornejo, M.E., Lobo, D., Medina, J.: Syntax and semantics of multi-adjoint normal logic programming. Fuzzy Sets Syst. 345, 41–62 (2018)

    Article  MathSciNet  Google Scholar 

  15. Loyer, Y., Straccia, U.: The well-founded semantics in normal logic programs with uncertainty. In: Hu, Z., Rodríguez-Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441, pp. 152–166. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45788-7_9

    Chapter  MATH  Google Scholar 

  16. van Gelder, A.: The alternating fixpoint of logic programs with negation. In: PODS 1989: Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 1–10. ACM, New York (1989)

    Google Scholar 

  17. Fitting, M.: Fixpoint semantics for logic programming: a survey. Theor. Comput. Sci. 278(1–2), 25–51 (2002)

    Article  MathSciNet  Google Scholar 

  18. Fitting, M.: The family of stable models. J. Logic Programm. 17(2/3&4), 197–225 (1993)

    Article  MathSciNet  Google Scholar 

  19. van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 619–649 (1991)

    Article  MathSciNet  Google Scholar 

  20. Fitting, M.: Bilattices and the semantics of logic programming. J. Logic Programm. 11(2), 91–116 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 105.08-2018.09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Hung Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, V.H. (2019). The Stable Model Semantics of Normal Fuzzy Linguistic Logic Programs. In: Nguyen, N., Chbeir, R., Exposito, E., Aniorté, P., Trawiński, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics