Nothing Special   »   [go: up one dir, main page]

Skip to main content

Autonomous Air-Hockey Playing Cobot Using Optimal Control and Vision-Based Bayesian Tracking

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2019)

Abstract

This paper presents a novel autonomous air-hockey playing collaborative robot (cobot) that provides human-like gameplay against human opponents. Vision-based Bayesian tracking of the puck and striker are used in an Analytic Hierarchy Process (AHP)-based probabilistic tactical layer for high-speed perception. The tactical layer provides commands for an active control layer that controls the Cartesian position and yaw angle of a custom end effector. The active layer uses optimal control of the cobot’s posture inside the task nullspace. The kinematic redundancy is resolved using a weighted Moore-Penrose pseudo-inversion technique. Experiments with human players show high-speed human-like gameplay with potential applications in the growing field of entertainment robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A video demonstration of the system is available at: https://www.imperial.ac.uk/robot-intelligence/videos/.

References

  1. Bentivegna, D.C., Atkeson, C.G.: A framework for learning from observation using primitives. In: Kaminka, G.A., Lima, P.U., Rojas, R. (eds.) RoboCup 2002. LNCS (LNAI), vol. 2752, pp. 263–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45135-8_20

    Chapter  Google Scholar 

  2. Bishop, B., Spong, M.: Vision-based control of an air hockey playing robot. IEEE Control Syst. Mag. 19(3), 23–32 (1999)

    Article  Google Scholar 

  3. Djuric, P.M., et al.: Particle filtering. IEEE Signal Process. Mag. 20(5), 19–38 (2003)

    Article  Google Scholar 

  4. Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429 EP (2002)

    Article  Google Scholar 

  5. Falck, F., Doshi, S., Smuts, N., Lingi, J., Rants, K., Kormushev, P.: Human-centered manipulation and navigation with Robot DE NIRO. In: IROS 2018 Workshop: Towards Robots that Exhibit Manipulation Intelligence, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, October 2018

    Google Scholar 

  6. Franka Emika GmbH: Panda arm (2017). https://www.franka.de/

  7. Nakamura, Y.: Advanced Robotics: Redundancy and Optimization, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1990)

    Google Scholar 

  8. Namiki, A., Matsushita, S., Ozeki, T., Nonami, K.: Hierarchical processing architecture for an air-hockey robot system. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1187–1192. IEEE (2013)

    Google Scholar 

  9. Ogawa, M., et al.: Development of air hockey robot improving with the human players. In: IECON 2011, pp. 3364–3369 (2011)

    Google Scholar 

  10. Shimada, H., Kutsuna, Y., Kudoh, S., Suehiro, T.: A two-layer tactical system for an air-hockey-playing robot. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6985–6990. IEEE (2017)

    Google Scholar 

  11. Sorenson, H.: Kalman Filtering Techniques, Advances in Control Systems, vol. 3. Elsevier, Amsterdam (1966)

    MATH  Google Scholar 

  12. Taitler, A., Shimkin, N.: Learning control for air hockey striking using deep reinforcement learning. In: 2017 International Conference on Control, Artificial Intelligence, Robotics Optimization (ICCAIRO), pp. 22–27 (2017)

    Google Scholar 

  13. Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381, 520 EP (1996)

    Article  Google Scholar 

  14. Wang, W.J., Tsai, I.D., Chen, Z.D., Wang, G.H.: A vision based air hockey system with fuzzy control. In: Proceedings of the International Conference on Control Applications, vol. 2, pp. 754–759 (2002)

    Google Scholar 

  15. Whitaker, R.: The analytic hierarchy process - what it is and how it is used. Math. Model. 9, 161–176 (1987)

    Article  MathSciNet  Google Scholar 

  16. Wolpert, D.M., Flanagan, J.R.: Motor prediction. Curr. Biol. 11(18), R729–R732 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad AlAttar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

AlAttar, A., Rouillard, L., Kormushev, P. (2019). Autonomous Air-Hockey Playing Cobot Using Optimal Control and Vision-Based Bayesian Tracking. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds) Towards Autonomous Robotic Systems. TAROS 2019. Lecture Notes in Computer Science(), vol 11650. Springer, Cham. https://doi.org/10.1007/978-3-030-25332-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25332-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25331-8

  • Online ISBN: 978-3-030-25332-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics