Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fair Resource Allocation for Running HPC Workloads Simultaneously

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11622))

Included in the following conference series:

Abstract

In high performance computing (HPC) job schedulers usually divide resources of computing nodes into slots. Each slot can be assigned to execute only a single job from the queue. In some cases, jobs do not fully utilize all available resources from the slot which leads to internal fragmentation, wasted resources and to an increase of queue wait time. In this paper, we propose fair resource allocation strategies that can be applied in job schedulers for resource allocation. We cover such resources as CPU time, residential memory and network bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuchumov, R., Petrunin, V., Korkhov, V., Balashov, N., Kutovskiy, N., Sokolov, I.: Design and implementation of a service for cloud HPC computations. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10963, pp. 103–112. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95171-3_9

    Chapter  Google Scholar 

  2. Kuchumov, R.I., Korkhov, V.V.: Design and implementation of a service for performing HPC computations in cloud environment. In: CEUR Workshop Proceedings, vol. 2267, pp. 233–236 (2018)

    Google Scholar 

  3. Korkhov, V., Kobyshev, S., Degtyarev, A., Bogdanov, A.: Light-weight cloud-based virtual computing infrastructure for distributed applications and hadoop clusters. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10408, pp. 399–411. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62404-4_29

    Chapter  Google Scholar 

  4. Wong, C.S., Tan, I.K.T., Kumari, R.D., Lam, J.W., Fun, W.: Fairness and interactive performance of o(1) and CFS Linux kernel schedulers. In: International Symposium on Information Technology, vol. 4, pp. 1–8. IEEE, August 2008

    Google Scholar 

  5. Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3

    Chapter  Google Scholar 

  6. SGE, Son of Grid Engine. https://arc.liv.ac.uk/trac/SGE. Accessed 07 May 2019

  7. Maui: 5.2 Node Allocation, Page Redirection. http://docs.adaptivecomputing.com/maui/5.2nodeallocation.php. Accessed 07 May 2019

  8. LSF: Fairshare Scheduling. https://www.bsc.es/support/LSF/9.1.2/lsf_admin/index.htm?chap_fairshare_lsf_admin.html~main. Accessed 07 May 2019

  9. Sedighi, A., Deng, Y., Zhang, P.: Fariness of task scheduling in high performance computing environments. Scalable Comput. Pract. Experience 15(3), 271–288 (2014)

    Google Scholar 

  10. Wong, C.S., Tan, I., Kumari, R.D., Wey, F.: Towards achieving fairness in the Linux scheduler. ACM SIGOPS Operat. Syst. Rev. 42(5), 34–43 (2008)

    Article  Google Scholar 

  11. Waldspurger, C.A.: Memory resource management in VMware ESX server. ACM SIGOPS Oper. Syst. Rev. 36(SI), 181–194 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruslan Kuchumov or Vladimir Korkhov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuchumov, R., Korkhov, V. (2019). Fair Resource Allocation for Running HPC Workloads Simultaneously. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11622. Springer, Cham. https://doi.org/10.1007/978-3-030-24305-0_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24305-0_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24304-3

  • Online ISBN: 978-3-030-24305-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics