Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Automatic Method of Chronic Wounds Segmentation in Multimodal Images

  • Conference paper
  • First Online:
Information Technology in Biomedicine (ITIB 2019)

Abstract

Chronic    wounds are common diseases in aging society. Automatic method of images segmentation is required to effectively and objectively monitor the healing process. The segmentation method proposed in the paper employs Histograms of Oriented Gradients, Weighted Fuzzy C-Means Clustering, Edge Detection, Gradient Vector Flow and Active Contour techniques. The method gives high compliance with manual outlines performed by two experts. Mean Dice Index for 11 cases was 0.84. Obtained results indicate the possibility of automation of diagnosis and monitoring processes. An infrared image reveals the parts of the wound under the skin which are invisible for commonly used cameras and it might give valuable information for physicians in assortment of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, G., Ceilley, R.: Chronic wound healing: a review of current management and treatments. Adv. Ther. 34(3), 599–610 (2017). https://doi.org/10.1007/s12325-017-0478-y

    Article  Google Scholar 

  2. Mustoe, T.: Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg. 187(5), 65S–70S (2004). https://doi.org/10.1016/S0002-9610(03)00306-4

    Article  Google Scholar 

  3. Sen, C.K., Gordillo, G.M., Roy, S., Kirsner, R., Lambert, L., Hunt, T.K., Gottrup, F., Gurtner, G.C., Longaker, M.T.: Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17(6), 763–771 (2009). https://doi.org/10.1111/j.1524-475X.2009.00543.x

    Article  Google Scholar 

  4. Frykberg, R.G., Banks, J.: Challenges in the treatment of chronic wounds. Adv. Wound Care 4(9), 560–582 (2015). https://doi.org/10.1089/wound.2015.0635

    Article  Google Scholar 

  5. Mukherjee, R., Manohar, D.D., Das, D.K., Achar, A., Mitra, A., Chakraborty1, C.: Automated tissue classification framework for reproducible chronic wound assessment. BioMed Res. Int. (2014). https://doi.org/10.1155/2014/851582

  6. Marina Kolesnik, M., Fexa, A.: Multi-dimensional color histograms for segmentation of wounds in images. In: International Conference Image Analysis and Recognition 2005, LNCS, vol. 3656, pp. 1014–1022 (2005). https://doi.org/10.1007/11559573_123

  7. Filko, D., Cupec, R., Nyarko, E.K.: Detection, reconstruction and segmentation of chronic wounds using Kinect v2 sensor. Procedia Comput. Sci. 90, 151–156 (2016). https://doi.org/10.1016/j.procs.2016.07.022

    Article  Google Scholar 

  8. Fauzi, M.F.A., Khansa, I., Catignani, K., Gordillo, G., Sen, C.K., Gurcan, M.N.: Computerized segmentation and measurement of chronic wound images. Comput. Biol. Med. 60, 74–85 (2015). https://doi.org/10.1016/j.compbiomed.2015.02.015

    Article  Google Scholar 

  9. Aslantas, V., Tunckanat, M.: Differential evolution algorithm for segmentation of wound images. In: 2007 IEEE International Symposium on Intelligent Signal Processing, pp. 1–5 (2007). https://doi.org/10.1109/WISP.2007.4447606

  10. Song, B., Sacan, A.: Automated wound identification system based on image segmentation and artificial neural networks. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine, pp. 1–4 (2012). https://doi.org/10.1109/BIBM.2012.6392633

  11. Veredas, F., Mesa, H., Morente, L.: Binary tissue classification on wound images with neural networks and bayesian classifiers. IEEE Trans. Med. Imaging 29(2), 410–427 (2010). https://doi.org/10.1109/TMI.2009.2033595

    Article  Google Scholar 

  12. Chaves, M., Silva, F., Soares, V., Ferreira, R., Gomes, F., Andrade, R., Pinotti, M.: Evaluation of healing of pressure ulcers through thermography: a preliminary study. Res. Biomed. Eng. 31(1), 3–9 (2015). https://doi.org/10.1590/2446-4740.0571

    Article  Google Scholar 

  13. Renkielska, A., Nowakowski, A., Kaczmarek, M., Dobke, M.K., Grudzinski, J., Karmolinski, A., Stojek, W.: Static thermography revisited - an adjunct method for determining the depth of the burn injury. Burns 31(6), 768–775 (2005). https://doi.org/10.1016/j.burns.2005.04.006

    Article  Google Scholar 

  14. Woloshuk, A., Kręcichwost, M., Juszczyk, J., Pyciński, B., Rudzki, M., Choroba, B., Ledwon, D., Spinczyk, D., Pietka, E.: Development of a multimodal image registration and fusion technique for visualising and monitoring chronic skin wounds. In: Information Technology in Biomedicine, pp. 138–149 (2018). https://doi.org/10.1007/978-3-319-91211-0_12

  15. Yadav, M.K., Manohar, D.D., Mukherjee, G., Chakraborty, C.: Segmentation of chronic wound areas by clustering techniques using selected color space. J. Med. Imaging Health Inform. 3(1), 22–29 (2013). https://doi.org/10.1166/jmihi.2013.1124

    Article  Google Scholar 

  16. Navas, M., Luque-Baena1, R.M., Morente, L., Coronado, D., Rodriguez, R., Veredas, F.J.: Computer-aided diagnosis in wound images with neural network. In: IWANN 2013, vol. 7903. Advances in Computational Intelligence, pp. 439–448 (2013). https://doi.org/10.1007/978-3-642-38682-4_47

  17. Li, F., Wang, C., Liu, X., Peng, Y., Jin, S.: A composite model of wound segmentation based on traditional methods and deep neural networks. Comput. Intell. Neurosci. 2018 (2018)

    Google Scholar 

  18. Kass, M., Witkin, A., Terzopoulos, D.: Int J Comput. Vis. 1, 321 (1988). https://doi.org/10.1007/BF00133570

    Article  Google Scholar 

  19. Xu, C., Prince, J.L.: Gradient vector flow: a new external force for snakes. In: Proceedings of the IEEE conference on computer vision and pattern Recognition (CVPR), pp. 66–71. Computer Society Press, Los Alamitos, June 1997

    Google Scholar 

  20. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Vision & Pattern Recognition, vol. 2, pp. 886–893 (2005)

    Google Scholar 

  21. Czajkowska, J., et al.: HoG feature based detection of tissue deformations in ultrasound data. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6326–6329 (2015)

    Google Scholar 

  22. Czajkowska, J., Juszczyk, J., Pycinski, B., Pietka, E.: Biopsy needle and tissue deformations detection in elastography supported ultrasound. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. ITiB: Advances in Intelligent Systems and Computing, vol. 471. Springer, Cham (2016)

    Google Scholar 

  23. Czajkowska, J., Feinen, C., Grzegorzek, M., Raspe, M., Wickenhofer, R.: Skeleton graph matching vs. maximum weight cliques aorta registration techniques. Comput. Med. Imaging Graph., part II 46, 142–152 (2015). https://doi.org/10.1016/j.compmedimag.2015.05.001

  24. Szwarc, P., Kawa, J., Pietka, E.: White matter segmentation from MR images in subjects with brain tumours. In: Third International Conference on Information Technologies in Biomedicine: ITIB 2012, Gliwice, Poland, June 11–13, 2012. Proceedings, pp. 36–46. Springer, Heidelberg (2012)

    Google Scholar 

  25. Canny, J.: A computational approach to edge detection. IEEE Trans Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the Polish National Science Centre (NCN) grant No.: UMO-2016/21/B/ST7/02236. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Czajkowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Czajkowska, J. et al. (2019). An Automatic Method of Chronic Wounds Segmentation in Multimodal Images. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2019. Advances in Intelligent Systems and Computing, vol 1011. Springer, Cham. https://doi.org/10.1007/978-3-030-23762-2_22

Download citation

Publish with us

Policies and ethics