Abstract
Chronic wounds are common diseases in aging society. Automatic method of images segmentation is required to effectively and objectively monitor the healing process. The segmentation method proposed in the paper employs Histograms of Oriented Gradients, Weighted Fuzzy C-Means Clustering, Edge Detection, Gradient Vector Flow and Active Contour techniques. The method gives high compliance with manual outlines performed by two experts. Mean Dice Index for 11 cases was 0.84. Obtained results indicate the possibility of automation of diagnosis and monitoring processes. An infrared image reveals the parts of the wound under the skin which are invisible for commonly used cameras and it might give valuable information for physicians in assortment of treatment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Han, G., Ceilley, R.: Chronic wound healing: a review of current management and treatments. Adv. Ther. 34(3), 599–610 (2017). https://doi.org/10.1007/s12325-017-0478-y
Mustoe, T.: Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am. J. Surg. 187(5), 65S–70S (2004). https://doi.org/10.1016/S0002-9610(03)00306-4
Sen, C.K., Gordillo, G.M., Roy, S., Kirsner, R., Lambert, L., Hunt, T.K., Gottrup, F., Gurtner, G.C., Longaker, M.T.: Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 17(6), 763–771 (2009). https://doi.org/10.1111/j.1524-475X.2009.00543.x
Frykberg, R.G., Banks, J.: Challenges in the treatment of chronic wounds. Adv. Wound Care 4(9), 560–582 (2015). https://doi.org/10.1089/wound.2015.0635
Mukherjee, R., Manohar, D.D., Das, D.K., Achar, A., Mitra, A., Chakraborty1, C.: Automated tissue classification framework for reproducible chronic wound assessment. BioMed Res. Int. (2014). https://doi.org/10.1155/2014/851582
Marina Kolesnik, M., Fexa, A.: Multi-dimensional color histograms for segmentation of wounds in images. In: International Conference Image Analysis and Recognition 2005, LNCS, vol. 3656, pp. 1014–1022 (2005). https://doi.org/10.1007/11559573_123
Filko, D., Cupec, R., Nyarko, E.K.: Detection, reconstruction and segmentation of chronic wounds using Kinect v2 sensor. Procedia Comput. Sci. 90, 151–156 (2016). https://doi.org/10.1016/j.procs.2016.07.022
Fauzi, M.F.A., Khansa, I., Catignani, K., Gordillo, G., Sen, C.K., Gurcan, M.N.: Computerized segmentation and measurement of chronic wound images. Comput. Biol. Med. 60, 74–85 (2015). https://doi.org/10.1016/j.compbiomed.2015.02.015
Aslantas, V., Tunckanat, M.: Differential evolution algorithm for segmentation of wound images. In: 2007 IEEE International Symposium on Intelligent Signal Processing, pp. 1–5 (2007). https://doi.org/10.1109/WISP.2007.4447606
Song, B., Sacan, A.: Automated wound identification system based on image segmentation and artificial neural networks. In: 2012 IEEE International Conference on Bioinformatics and Biomedicine, pp. 1–4 (2012). https://doi.org/10.1109/BIBM.2012.6392633
Veredas, F., Mesa, H., Morente, L.: Binary tissue classification on wound images with neural networks and bayesian classifiers. IEEE Trans. Med. Imaging 29(2), 410–427 (2010). https://doi.org/10.1109/TMI.2009.2033595
Chaves, M., Silva, F., Soares, V., Ferreira, R., Gomes, F., Andrade, R., Pinotti, M.: Evaluation of healing of pressure ulcers through thermography: a preliminary study. Res. Biomed. Eng. 31(1), 3–9 (2015). https://doi.org/10.1590/2446-4740.0571
Renkielska, A., Nowakowski, A., Kaczmarek, M., Dobke, M.K., Grudzinski, J., Karmolinski, A., Stojek, W.: Static thermography revisited - an adjunct method for determining the depth of the burn injury. Burns 31(6), 768–775 (2005). https://doi.org/10.1016/j.burns.2005.04.006
Woloshuk, A., Kręcichwost, M., Juszczyk, J., Pyciński, B., Rudzki, M., Choroba, B., Ledwon, D., Spinczyk, D., Pietka, E.: Development of a multimodal image registration and fusion technique for visualising and monitoring chronic skin wounds. In: Information Technology in Biomedicine, pp. 138–149 (2018). https://doi.org/10.1007/978-3-319-91211-0_12
Yadav, M.K., Manohar, D.D., Mukherjee, G., Chakraborty, C.: Segmentation of chronic wound areas by clustering techniques using selected color space. J. Med. Imaging Health Inform. 3(1), 22–29 (2013). https://doi.org/10.1166/jmihi.2013.1124
Navas, M., Luque-Baena1, R.M., Morente, L., Coronado, D., Rodriguez, R., Veredas, F.J.: Computer-aided diagnosis in wound images with neural network. In: IWANN 2013, vol. 7903. Advances in Computational Intelligence, pp. 439–448 (2013). https://doi.org/10.1007/978-3-642-38682-4_47
Li, F., Wang, C., Liu, X., Peng, Y., Jin, S.: A composite model of wound segmentation based on traditional methods and deep neural networks. Comput. Intell. Neurosci. 2018 (2018)
Kass, M., Witkin, A., Terzopoulos, D.: Int J Comput. Vis. 1, 321 (1988). https://doi.org/10.1007/BF00133570
Xu, C., Prince, J.L.: Gradient vector flow: a new external force for snakes. In: Proceedings of the IEEE conference on computer vision and pattern Recognition (CVPR), pp. 66–71. Computer Society Press, Los Alamitos, June 1997
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: International Conference on Vision & Pattern Recognition, vol. 2, pp. 886–893 (2005)
Czajkowska, J., et al.: HoG feature based detection of tissue deformations in ultrasound data. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6326–6329 (2015)
Czajkowska, J., Juszczyk, J., Pycinski, B., Pietka, E.: Biopsy needle and tissue deformations detection in elastography supported ultrasound. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds.) Information Technologies in Medicine. ITiB: Advances in Intelligent Systems and Computing, vol. 471. Springer, Cham (2016)
Czajkowska, J., Feinen, C., Grzegorzek, M., Raspe, M., Wickenhofer, R.: Skeleton graph matching vs. maximum weight cliques aorta registration techniques. Comput. Med. Imaging Graph., part II 46, 142–152 (2015). https://doi.org/10.1016/j.compmedimag.2015.05.001
Szwarc, P., Kawa, J., Pietka, E.: White matter segmentation from MR images in subjects with brain tumours. In: Third International Conference on Information Technologies in Biomedicine: ITIB 2012, Gliwice, Poland, June 11–13, 2012. Proceedings, pp. 36–46. Springer, Heidelberg (2012)
Canny, J.: A computational approach to edge detection. IEEE Trans Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Acknowledgment
This research is supported by the Polish National Science Centre (NCN) grant No.: UMO-2016/21/B/ST7/02236. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Czajkowska, J. et al. (2019). An Automatic Method of Chronic Wounds Segmentation in Multimodal Images. In: Pietka, E., Badura, P., Kawa, J., Wieclawek, W. (eds) Information Technology in Biomedicine. ITIB 2019. Advances in Intelligent Systems and Computing, vol 1011. Springer, Cham. https://doi.org/10.1007/978-3-030-23762-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-23762-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-23761-5
Online ISBN: 978-3-030-23762-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)