Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model Assessment Through Data Assimilation of Realistic Data in Cardiac Electrophysiology

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11504))

  • 1337 Accesses

Abstract

We consider a model-based estimation procedure – namely a data assimilation algorithm – of the atrial depolarization state of a subject using data corresponding to electro-anatomical maps. Our objective is to evaluate the sensitivity of such a model-based reconstruction with respect to model choices. The followed data assimilation approach is capable of using electrical activation times to adapt a monodomain model simulation, thanks to an ingenious model-data fitting term inspired from image processing. The resulting simulation smoothes and completes the activation maps when they are spatially incomplete. Moreover, conductivity parameters can also be inferred. The model sensitivity assessment is performed based on synthetic data generated with a validated realistic atria model and then inverted using simpler modeling ingredients. In particular, the impact of the muscle fibers definition and corresponding anisotropic conductivity parameters is studied. Finally, an application of the method to real data is presented, showing promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chapelle, D., Fragu, M., Mallet, V., Moireau, P.: Fundamental principles of data assimilation underlying the Verdandi library: applications to biophysical model personalization within euHeart. Med. Biol. Eng. Comput. 51, 1–13 (2012)

    Google Scholar 

  2. Collin, A., Chapelle, D., Moireau, P.: A Luenberger observer for reaction-diffusion models with front position data. J. Comput. Phys. 300, 288–307 (2015)

    Article  MathSciNet  Google Scholar 

  3. Corrado, C., et al.: Personalized models of human atrial electrophysiology derived from endocardial electrograms. IEEE Trans. Biomed. Eng. 64(4), 735–742 (2017)

    Article  Google Scholar 

  4. Courtemanche, M., Ramirez, R., Nattel, S.: Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am. J. Physiol. 275, H301–H321 (1998)

    Google Scholar 

  5. Jazwinski, A.H.: Stochastic Processes and Filtering Theory. Academic Press, Cambridge (1970)

    MATH  Google Scholar 

  6. Konukoglu, E., et al.: Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to Eikonal-Diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Bio. 107(1), 134–146 (2011)

    Article  Google Scholar 

  7. Labarthe, S., et al.: A bilayer model of human atria: mathematical background, construction, and assessment. Europace 16(Suppl. 4), iv21–iv29 (2014)

    Article  Google Scholar 

  8. Mitchell, C., Schaeffer, D.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Bio. 65, 767–793 (2003)

    Article  Google Scholar 

  9. Moireau, P., Chapelle, D., Le Tallec, P.: Joint state and parameter estimation for distributed mechanical systems. Comput. Methods Appl. Mech. Eng. 197, 659–677 (2008)

    Article  MathSciNet  Google Scholar 

  10. Moireau, P., Chapelle, D.: Reduced-order unscented kalman filtering with application to parameter identification in large-dimensional systems. ESAIM Control Optimisation Calc. Var. 17(2), 380–405 (2011)

    Article  MathSciNet  Google Scholar 

  11. Moreau-Villeger, V., Delingette, H., Sermesant, M., Ashikaga, H., McVeigh, E., Ayache, N.: Building maps of local apparent conductivity of the epicardium with a 2-D electrophysiological model of the heart. IEEE Trans. Biomed. Eng. 53(8), 1457–1466 (2006)

    Article  Google Scholar 

  12. Prabhu, S., et al.: Biatrial electrical and structural atrial changes in heart failure: electroanatomic mapping in persistent atrial fibrillation in humans. JACC Clin. Electrophysiol. 4(1), 87–96 (2018)

    Article  MathSciNet  Google Scholar 

  13. Talbot, H., Cotin, S., Razavi, R., Rinaldi, C., Delingette, H.: Personalization of cardiac electrophysiology model using the unscented kalman filtering. In: Computer Assisted Radiology and Surgery (CARS 2015) (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Gérard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gérard, A., Collin, A., Bureau, G., Moireau, P., Coudière, Y. (2019). Model Assessment Through Data Assimilation of Realistic Data in Cardiac Electrophysiology. In: Coudière, Y., Ozenne, V., Vigmond, E., Zemzemi, N. (eds) Functional Imaging and Modeling of the Heart. FIMH 2019. Lecture Notes in Computer Science(), vol 11504. Springer, Cham. https://doi.org/10.1007/978-3-030-21949-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21949-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21948-2

  • Online ISBN: 978-3-030-21949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics