Abstract
This paper deals with the problem of human efforts reduction in manual handling and lifting tasks for industry. Recent studies pointed out that more than 50% of workers suffer from low back pain. In these cases, a human assistance could be useful for increasing the quality of life. In this paper, a conceptual investigation on human body with a wearable exoskeleton for assistance is presented. A 3D human multibody model has been developed and its behaviour has been validated with the human one in manual handling and lifting tasks loads. The presented study demonstrates how the motion behaviour of a 3D human model with two joints between legs and trunk, instead of one, helps a human-like comparison between human and model. In particular, the important results of this paper underline how the human torques may be appropriately reduced modifying the position of exoskeleton’s joints. The output of the research are important for the conceptual exoskeletons design conceived for human assistance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Parent-Thirion, A., Biletta, I., Cabrita, J., Vargas Llave, O., Vermeylen, G., Wilczynska, A., & Wilkens, M.: Sixth European Working Conditions Survey – Overview report (2017 update) | European Foundation for Improvement of Living and Working Conditions. (2016).
De Looze, M.P., Bosch, T., Krause, F., Stadler, K.S., O’Sullivan, L.W.: Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics. 59, 671–681 (2016). https://doi.org/10.1080/00140139.2015.1081988
Gopura, R.A.R.C., Kiguchi, K., Bandara, D.S.V.: A brief review on upper extremity robotic exoskeleton systems. In: 2011 6th International Conference on Industrial and Information Systems, ICIIS 2011 - Conference Proceedings. pp. 346–351. IEEE (2011)
http://en.laevo.nl/, accessed 2018/11/21.
https://www.suitx.com/backx, accessed 2018/11/21
http://www.levitatetech.com/, accessed 2018/11/21
Abdoli-E, M., Agnew, M.J., Stevenson, J.M.: An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks. Clin. Biomech. 21, 456–465 (2006). https://doi.org/10.1016/j.clinbiomech.2005.12.021
Ko, H.K., Lee, S.W., Koo, D.H., Lee, I., Hyun, D.J.: Waist-assistive exoskeleton powered by a singular actuation mechanism for prevention of back-injury. Rob. Auton. Syst. 107, 1–9 (2018). https://doi.org/10.1016/j.robot.2018.05.008
Miura, K., Kadone, H., Koda, M., Abe, T., Endo, H., Murakami, H., Doita, M., Kumagai, H., Nagashima, K., Fujii, K., Noguchi, H., Funayama, T., Kawamoto, H., Sankai, Y., Yamazaki, M.: The hybrid assisted limb (HAL) for Care Support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements. J. Clin. Neurosci. 49, 83–86 (2018). https://doi.org/10.1016/j.jocn.2017.11.020
Spada, S., Ghibaudo, L., Gilotta, S., Gastaldi, L., Cavatorta, M.P.: Analysis of Exoskeleton introduction in industrial reality: main issues and EAWS risk assessment. In: Int. Conf. on Applied Human Factors and Ergonomics. pp. 236–244. Springer, Cham (2018)
Bosch, T., van Eck, J., Knitel, K., de Looze, M.: The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Appl. Ergon. 54, 212–217 (2016). https://doi.org/10.1016/j.apergo.2015.12.003
Spada, S., Ghibaudo, L., Carnazzo, C., Gastaldi, L., Cavatorta, M.P.: Passive Upper Limb Exoskeletons: An Experimental Campaign with Workers. Adv. Intell. Syst. Comput. 230–239 (2019). https://doi.org/10.1007/978-3-319-96068-5_26
Spada, S., Ghibaudo, L., Carnazzo, C., Di Pardo, M., Chander, D.S., Gastaldi, L., Cavatorta, M.P.: Physical and Virtual Assessment of a Passive Exoskeleton. Adv. Intell. Syst. Comput. 247–257 (2019). https://doi.org/10.1007/978-3-319-96068-5_28
Seth, A., Hicks, J.L., Uchida, T.K., Habib, A., Dembia, C.L., Dunne, J.J., Ong, C.F., DeMers, M.S., Rajagopal, A., Millard, M., Hamner, S.R., Arnold, E.M., Yong, J.R., Lakshmikanth, S.K., Sherman, M.A., Ku, J.P., Delp, S.L.: OpenSim: Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement. PLOS Comput. Biol. 14, (2018). https://doi.org/10.1371/journal.pcbi.1006223
Bassani, T., Stucovitz, E., Qian, Z., Briguglio, M., Galbusera, F.: Validation of the AnyBody full body musculoskeletal model in computing lumbar spine loads at L4L5 level. J. Biomech. 58, 89–96 (2017). https://doi.org/10.1016/j.jbiomech.2017.04.025
Luo, Z., Yu, Y.: Wearable stooping-assist device in reducing risk of low back disorders during stooped work. In: 2013 IEEE International Conference on Mechatronics and Automation, IEEE ICMA 2013. pp. 230–236 (2013)
Toxiri, S., Ortiz, J., Masood, J., Fernandez, J., Mateos, L.A., Caldwell, D.G.: A wearable device for reducing spinal loads during lifting tasks: Biomechanics and design concepts. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). pp. 2295–2300. IEEE (2015)
Millard, M., Sreenivasa, M., Mombaur, K.: Predicting the Motions and Forces of Wearable Robotic Systems Using Optimal Control. In: Frontiers in Robotics and AI. pp. 1–12 (2017)
Mombaur, K., Harant, M., Sreenivasa, M., Millard, M., Sarabon, N.: Parameter optimization for passive spinal exoskeletons based on experimental data and optimal control. In: In Humanoid Robotics (Humanoids), 2017 IEEE-RAS 17th International Conference on. pp. 535–540 (2017)
Wu, G., van der Helm, F.C.T., (DirkJan) Veeger, H.E.J., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B.: ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand. J. Biomech. 38, 981–992 (2005). https://doi.org/10.1016/j.jbiomech.2004.05.042
Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D.D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. J. Biomech. 35, 543–548 (2002).
ISO/TR 7250–2: Basic human body measurements for technological design. Part 2: Statistical summaries of body measurements from individual ISO populations (2010).
de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 29, 1223–1230 (1996). https://doi.org/10.1016/0021-9290(95)00178-6
Dumas, R., Chèze, L., Verriest, J.-P.: Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 40, 543–553 (2007).
Muscolo, G.G., Caldwell, D., Cannella, F.: Biomechanics of human locomotion with constraints to design flexible-wheeled biped robots. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). pp. 1273–1278. IEEE (2017)
G. G. Muscolo, D. Caldwell and F. Cannella, Multibody biomechanical analysis of taekwondo athletes. Proceedings of the 8th ECCOMAS Thematic Conference on Multibody Dynamics 2017, MBD 2017 Volume 2017-January, 2017, pp. 799-804.
Hwang, S., Kim, Y., Kim, Y.: Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting. BMC Musculoskelet. Disord. 10, 15 (2009).
Faber, G.S., Kingma, I., van Dieën, J.H.: Bottom-up estimation of joint moments during manual lifting using orientation sensors instead of position sensors. J. Biomech. 43, 1432–1436 (2010). https://doi.org/10.1016/j.jbiomech.2010.01.019
Kingma, I., Baten, C.T.M., Dolan, P., Toussaint, H.M., van Dieën, J.H., de Looze, M.P., Adams, M.A.: Lumbar loading during lifting: a comparative study of three measurement techniques. J. Electromyogr. Kinesiol. 11, 337–345 (2001).
Toxiri, S., Sposito, M., Lazzaroni, M., Mancini, L., Di Pardo, M., Caldwell, D.G., Ortiz, J.: Towards Standard Specifications for Back-Support Exoskeletons. In: International Symposium on Wearable Robotics. pp. 219–223. Springer, Cham (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Panero, E., Muscolo, G.G., Pastorelli, S., Gastaldi, L. (2019). Influence of hinge positioning on human joint torque in industrial trunk exoskeleton. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-20131-9_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20130-2
Online ISBN: 978-3-030-20131-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)