Abstract
In the recent years, deep learning based methods and, in particular, convolutional neural networks, have been dominating the arena of medical image analysis. This has been made possible both with the advent of new parallel hardware and the development of efficient algorithms. It is expected that future advances in both of these directions will increase this domination. The application of deep learning methods to medical image analysis has been shown to significantly improve the accuracy and efficiency of the diagnoses. In this chapter, we focus on applications of deep learning in microscopy image analysis and digital pathology, in particular. We provide an overview of the state-of-the-art methods in this area and exemplify some of the main techniques. Finally, we discuss some open challenges and avenues for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Actually b can be considered as a special weight \(w_0\) associated with a special input \(x_0\) which has a constant value 1. In this way the transfer function becomes slightly simpler \(\sigma (\mathbf {w}^T \mathbf {x})\). However, for the sake of clarity here we keep these two parameters separately.
- 2.
Actually this is a definition of a cross-correlation which is slightly different than the usual mathematical notion of convolution, but in the machine learning practice this is how the convolution operation is implemented [23].
- 3.
In principle, one can unfold the \(m \times n\) covered rectangular patch of the input and the filter into l-dimensional vectors, where \(l = m \times n\). In this way, “*” becomes real a dot product between the vectors. Also, a bias element can be added, like in the traditional neural networks.
- 4.
In recent years, there is growing a trend to use fully convolutional networks in which the fully connected layers are implemented by means of convolutional layers.
References
15th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2015, Seoul, South Korea, 3–5 November 2015. IEEE (2015). http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7349033
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015. IEEE Computer Society (2015). http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7293313
Arbelle A, Raviv TR (2018) Microscopy cell segmentation via adversarial neural networks. In: 15th IEEE International symposium on biomedical imaging, ISBI 2018, Washington, DC, USA, 4–7 April 2018. IEEE, pp 645–648. https://doi.org/10.1109/ISBI.2018.8363657
Arbelle A, Raviv TR (2018) Microscopy cell segmentation via convolutional LSTM networks. CoRR. arXiv:1895.11247
Ehteshami Bejnordi B, Veta M, Johannes van Diest P et al (2017) Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22):2199–2210. https://doi.org/10.1001/jama.2017.14585
Bejnordi BE, Litjens GJS, Timofeeva N, Otte-Holler I, Homeyer A, Karssemeijer N, van der Laak JAWM (2016) Stain specific standardization of whole-slide histopathological images. IEEE Trans Med Imag 35(2):404–415. https://doi.org/10.1109/TMI.2015.2476509
Bejnordi BE, Zuidhof G, Maschenka Balkenhol MH, Bult P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak J (2017) Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images. J Med Imag 4:4–8. https://doi.org/10.1117/1.JMI.4.4.044504
Bekkers EJ, Lafarge MW, Veta M, Eppenhof KAJ, Pluim JPW, Duits R (2018) Roto-translation covariant convolutional networks for medical image analysis. CoRR. arXiv:1804.03393
Christ PF, Ettlinger F, Grün F, Elshaer MEA, Lipková J, Schlecht S, Ahmaddy F, Tatavarty S, Bickel M, Bilic P, Rempfler M, Hofmann F, D’Anastasi M, Ahmadi S, Kaissis G, Holch J, Sommer WH, Braren R, Heinemann V, Menze BH (2017) Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. CoRR arXiv:1702.05970
Christiansen EM, Yang SJ, Ando DM, Javaherian A, Skibinski G, Lipnick S, Mount E, O’Neil A, Shah K, Lee AK, Goyal P, Fedus W, Poplin R, Esteva A, Berndl M, Rubin LL, Nelson P, Finkbeiner S (2018) In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173(3):792–803.e19. https://doi.org/10.1016/j.cell.2018.03.040, http://www.sciencedirect.com/science/article/pii/S0092867418303647
Çiçek Ö, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O (2016) 3d u-net: learning dense volumetric segmentation from sparse annotation. CoRR. arXiv:1606.06650
Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J (2012) Deep neural networks segment neuronal membranes in electron microscopy images. In: Bartlett PL, Pereira FCN, Burges CJC, Bottou L, Weinberger KO (eds.) Advances in Neural information processing systems 25: 26th annual conference on neural information processing systems 2012. Proceedings of a meeting held 3–6 December 2012, Lake Tahoe, Nevada, United States, pp 2852–2860. http://papers.nips.cc/paper/4741-deep-neural-networks-segment-neuronal-membranes-in-electron-microscopy-images
Ciresan DC, Giusti A, Gambardella LM, Schmidhuber J (2013) Mitosis detection in breast cancer histology images with deep neural networks. In: Mori K, Sakuma I, Sato Y, Barillot C, Navab N (eds.) Medical image computing and computer-assisted intervention - MICCAI 2013 - 16th international conference, Nagoya, Japan, September 22-26, 2013, Proceedings, Part II, Lecture Notes in Computer Science, vol 8150. Springer, pp 411–418. https://doi.org/10.1007/978-3-642-40763-5_51
Codella NCF, Anderson D, Philips T, Porto A, Massey K, Snowdon J, Feris RS, Smith JR (2018) Segmentation of both diseased and healthy skin from clinical photographs in a primary care setting. CoRR. arXiv:1804.05944
Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NNC, Tomaszewski J, González FA, Madabhushi A (2017) Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Scientif Rep 7:46450 EP. https://doi.org/10.1038/srep46450
Donahue J, Hendricks LA, Guadarrama S, Rohrbach M, Venugopalan S, Darrell T, Saenko K (2015) Long-term recurrent convolutional networks for visual recognition and description. In: IEEE conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, 7–12 June 2015, vol 2, pp 2625–2634. https://doi.org/10.1109/CVPR.2015.7298878
Dozat T (2015) Incorporating nesterov momentum into adam
Drozdzal M, Vorontsov E, Chartrand G, Kadoury S, Pal C (2016) The importance of skip connections in biomedical image segmentation. CoRR. arXiv:1608.04117
Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybernet 36:193–202
Fukushima K, Miyake S (1982) Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recogn 15(6):455–469. http://www.sciencedirect.com/science/article/B6V14-48MPJ6Y-F7/2/2588c38bc16488ae94fe2334068ed166
Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky VS (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17, 59:1–59:35. http://jmlr.org/papers/v17/15-239.html
Goldsborough P, Pawlowski N, Caicedo JC, Singh S, Carpenter A (2017) Cytogan: generative modeling of cell images. bioRxiv. https://doi.org/10.1101/227645, https://www.biorxiv.org/content/early/2017/12/02/227645
Goodfellow IJ, Bengio Y, Courville AC (2016) Deep learning: adaptive computation and machine learning. MIT Press. http://www.deeplearningbook.org/
He K, Gkioxari G, Dollár P, Girshick RB (2017) Mask R-CNN. In: IEEE international conference on computer vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pp 2980–2988. IEEE Computer Society. https://doi.org/10.1109/ICCV.2017.322
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRR. arXiv:1512.03385
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735
Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017. IEEE Computer Society, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243
Johnson JW (2018) Adapting mask-rcnn for automatic nucleus segmentation. CoRR. arXiv:1805.00500
Katz G, Barrett C, Dill DL, Julian K, Kochenderfer MJ (2017) Towards proving the adversarial robustness of deep neural networks. In: Bulwahn L, Kamali M, Linker S (eds.) Proceedings first workshop on formal verification of autonomous vehicles, FVAV@iFM 2017, Turin, Italy, 19th September 2017. EPTCS, vol 257, pp 19–26. https://doi.org/10.4204/EPTCS.257.3
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. CoRR arXiv:1412.6980
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems, vol 1, NIPS’12, pp 1097–1105. Curran Associates Inc., USA. http://dl.acm.org/citation.cfm?id=2999134.2999257
Lafarge MW, Pluim JPW, Eppenhof KAJ, Moeskops P, Veta M (2017) Domain-adversarial neural networks to address the appearance variability of histopathology images. CoRR. arXiv:1707.06183
Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.138.1115, http://www.cs.berkeley.edu/daf/appsem/Handwriting/papers/00726791.pdf
Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollár P, Zitnick CL (2014) Microsoft coco: common objects in context. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer Vision - ECCV 2014. Springer International Publishing, Cham, pp 740–755
Litjens GJS, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Imag Anal 42:60–88
Lo SCB, Lou SLA, Lin JS, Freedman MT, Chien MV, Mun SK (1995) Artificial convolution neural network techniques and applications for lung nodule detection. IEEE Trans Med Imag 14(4):711–718. https://doi.org/10.1109/42.476112
Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. CoRR arXiv:1606.04797
Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velázquez Vega JE, Brat DJ, Cooper LAD (2018) Predicting cancer outcomes from histology and genomics using convolutional networks. Proc Nat Acad Sci 115(13):E2970–E2979. https://doi.org/10.1073/pnas.1717139115, http://www.pnas.org/content/115/13/E2970
Paeng K, Hwang S, Park S, Kim M (2017) A unified framework for tumor proliferation score prediction in breast histopathology. In: Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood TF, Tavares JMRS, Moradi M, Bradley AP, Greenspan H, Papa JP, Madabhushi A, Nascimento JC, Cardoso JS, Belagiannis V, Lu Z (eds.) Deep learning in medical image analysis and multimodal learning for clinical decision support - Third international workshop, DLMIA 2017, and 7th international workshop, ML-CDS 2017, Held in Conjunction with MICCAI 2017, Québec City, QC, Canada, September 14, 2017, Proceedings, Lecture Notes in Computer Science, vol 10553. Springer, pp 231–239. https://doi.org/10.1007/978-3-319-67558-9_27
Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. CoRR arXiv:1505.04597
Shen D, Wu G, Suk HI (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5479722/28301734 [pmid]
Shi X, Chen Z, Wang H, Yeung D, Wong W, Woo W (2015) Convolutional LSTM network: a machine learning approach for precipitation nowcasting. CoRR. arXiv:1506.04214
Sundermann B, Feder S, Wersching H, Teuber A, Schwindt W, Kugel H, Heindel W, Arolt V, Berger K, Pfleiderer B (2017) Diagnostic classification of unipolar depression based on resting-state functional connectivity MRI: effects of generalization to a diverse sample. J Neural Trans 124(5):589–605. https://doi.org/10.1007/s00702-016-1673-8
Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. In: IEEE conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, June 7–12 2015, pp. 1–9. https://doi.org/10.1109/CVPR.2015.7298594
Trajanovski S, Mavroeidis D, Swisher CL, Gebre BG, Veeling B, Wiemker R, Klinder T, Tahmasebi A, Regis SM, Wald C, McKee BJ, MacMahon H, Pien H (2018) Towards radiologist-level cancer risk assessment in CT lung screening using deep learning. CoRR. arXiv:1804.01901
Vanschoren J, van Rijn JN, Bischl B (2015) Taking machine learning research online with openml. In: Proceedings of the 4th international workshop on big data, streams and heterogeneous source mining: algorithms, systems, programming models and applications, BigMine 2015, Sydney, Australia, August 10 2015. JMLR Workshop and Conference Proceedings, vol 41, pp 1–4. JMLR.org. http://jmlr.org/proceedings/papers/v41/vanschoren15.html
Veličković P, Wang D, Lane ND, Liò P (2016) X-cnn: cross-modal convolutional neural networks for sparse datasets. In: 2016 IEEE symposium series on computational intelligence (SSCI), pp 1–8. https://doi.org/10.1109/SSCI.2016.7849978
Wainberg M, Merico D, Delong A, Frey BJ (2018) Deep learning in biomedicine. Nat Biotechnol 36:829 EP. https://doi.org/10.1038/nbt.4233
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH (2016) Deep learning for identifying metastatic breast cancer. CoRR. arXiv:1606.05718
Xu Y, Li Y, Liu M, Wang Y, Lai M, Chang EI (2016) Gland instance segmentation by deep multichannel side supervision. CoRR. arXiv:1607.03222
Acknowledgements
The authors would like to thank the anonymous reviewers as well as Stojan Trajanovski for their comments and suggestions that contributed to the final version of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Bošnački, D., van Riel, N., Veta, M. (2019). Deep Learning with Convolutional Neural Networks for Histopathology Image Analysis. In: Liò, P., Zuliani, P. (eds) Automated Reasoning for Systems Biology and Medicine. Computational Biology, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-17297-8_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-17297-8_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17296-1
Online ISBN: 978-3-030-17297-8
eBook Packages: Computer ScienceComputer Science (R0)