Nothing Special   »   [go: up one dir, main page]

Skip to main content

Can Genetic Programming Do Manifold Learning Too?

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11451))

Included in the following conference series:

Abstract

Exploratory data analysis is a fundamental aspect of knowledge discovery that aims to find the main characteristics of a dataset. Dimensionality reduction, such as manifold learning, is often used to reduce the number of features in a dataset to a manageable level for human interpretation. Despite this, most manifold learning techniques do not explain anything about the original features nor the true characteristics of a dataset. In this paper, we propose a genetic programming approach to manifold learning called GP-MaL which evolves functional mappings from a high-dimensional space to a lower dimensional space through the use of interpretable trees. We show that GP-MaL is competitive with existing manifold learning algorithms, while producing models that can be interpreted and re-used on unseen data. A number of promising future directions of research are found in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    An embedding here refers to the low-dimensional representation of the structure present in a dataset.

  2. 2.

    Here, neighbours refer to the closest instances to a point by (Euclidean) distance.

  3. 3.

    Five inputs were found to be a good balance between encouraging wider trees and minimising computing resources required.

  4. 4.

    Information gain (mutual information) is often used in feature selection for classification to measure the dependency between a feature and the class label.

References

  1. Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  2. Cano, A., Ventura, S., Cios, K.J.: Multi-objective genetic programming for feature extraction and data visualization. Soft Comput. 21(8), 2069–2089 (2017)

    Article  Google Scholar 

  3. Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  4. François, D., Wertz, V., Verleysen, M.: The concentration of fractional distances. IEEE Trans. Knowl. Data Eng. 19(7), 873–886 (2007)

    Article  Google Scholar 

  5. Jolliffe, I.T.: Principal component analysis. In: Lovric, M. (ed.) International Encyclopedia of Statistical Science, pp. 1094–1096. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-04898-2

    Chapter  Google Scholar 

  6. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1), 1–27 (1964)

    Article  MathSciNet  Google Scholar 

  7. Lensen, A., Xue, B., Zhang, M.: New representations in genetic programming for feature construction in k-means clustering. In: Shi, Y., et al. (eds.) SEAL 2017. LNCS, vol. 10593, pp. 543–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68759-9_44

    Chapter  Google Scholar 

  8. Lensen, A., Xue, B., Zhang, M.: Automatically evolving difficult benchmark feature selection datasets with genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO, pp. 458–465. ACM (2018)

    Google Scholar 

  9. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining, vol. 454. Springer, Boston (2012). https://doi.org/10.1007/978-1-4615-5689-3

    Book  MATH  Google Scholar 

  10. van der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15(1), 3221–3245 (2014)

    MathSciNet  MATH  Google Scholar 

  11. van der Maaten, L., Hinton, G.E.: Visualizing high-dimensional data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  12. Neshatian, K., Zhang, M., Andreae, P.: A filter approach to multiple feature construction for symbolic learning classifiers using genetic programming. IEEE Trans. Evol. Comput. 16(5), 645–661 (2012)

    Article  Google Scholar 

  13. Nguyen, S., Zhang, M., Alahakoon, D., Tan, K.C.: Visualizing the evolution of computer programs for genetic programming [research frontier]. IEEE Comput. Intell. Mag. 13(4), 77–94 (2018)

    Article  Google Scholar 

  14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu.com, Morrisville (2008)

    Google Scholar 

  16. Rodriguez-Coayahuitl, L., Morales-Reyes, A., Escalante, H.J.: Structurally layered representation learning: towards deep learning through genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., García-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 271–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_17

    Chapter  Google Scholar 

  17. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  18. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: A particle swarm optimization-based flexible convolutional auto-encoder for image classification. IEEE Trans. Neural Netw. Learn. Syst. (2018). https://doi.org/10.1109/TNNLS.2018.2881143

  19. Sun, Y., Yen, G.G., Yi, Z.: Evolving unsupervised deep neural networks for learning meaningful representations. IEEE Trans. Evol. Comput. (2018). https://doi.org/10.1109/TEVC.2018.2808689

  20. Tran, B., Xue, B., Zhang, M.: Genetic programming for feature construction and selection in classification on high-dimensional data. Memet. Comput. 8(1), 3–15 (2016)

    Article  Google Scholar 

  21. Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst. Appl. 82, 128–150 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Lensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lensen, A., Xue, B., Zhang, M. (2019). Can Genetic Programming Do Manifold Learning Too?. In: Sekanina, L., Hu, T., Lourenço, N., Richter, H., García-Sánchez, P. (eds) Genetic Programming. EuroGP 2019. Lecture Notes in Computer Science(), vol 11451. Springer, Cham. https://doi.org/10.1007/978-3-030-16670-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16670-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16669-4

  • Online ISBN: 978-3-030-16670-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics