Nothing Special   »   [go: up one dir, main page]

Skip to main content

Directional Multiscale Feature Extraction for Biomedical Image Indexing and Retrieval Using Contourlet Transform

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2018 2018)

Abstract

Multiscale and multidirectional are desirable properties for image decomposition. This paper presents directional multiscale feature extraction for biomedical image indexing and retrieval using contourlet transform. The contourlet transform decomposed image at multiscale in directional sub-bands. The feature vector of each contourlet sub-band is calculated by computing the directional energies of the extracted coefficients of respective sub-band. The final feature vector is constructed by concatenating feature vectors of all contourlet sub-bands. The similarity between query feature vector and feature vector of database is calculated using Manhattan distance. The feature extraction time and feature vector length are reduced significantly using proposed method. The effectiveness of the proposed method is evaluated by conducting the experiments on two well-known biomedical databases: Open access series of imaging studies (OASIS) MRI and NEMA-CT. The average retrieval precision (ARP) and average retrieval rate (ARR) are used to measure the performance of the proposed method. The experimental results show that the proposed method outperforms well-known existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, W., Kim, J., Feng, D.D.: Content based medical image retrieval. In: Biomedical Information Technology, pp. 83–113. Elsevier (2008)

    Google Scholar 

  2. Kumar, A., Kim, J., Cai, W., Fulham, M., Feng, D.: Content based medical image retrieval: a survey of applications to multidimensional and multimodality data. J. Digit. Imaging 26, 1025–1039 (2013)

    Article  Google Scholar 

  3. Unay, D., Ekin, A., Jasinschi, R.: Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Tech. Biomed. 14(4), 897–903 (2009)

    Article  Google Scholar 

  4. Iakovidis, D.K., Pelekis, N., Kotsifakos, E.E., Kopanakis, I., Karanikas, H., Theodoridis, Y.: A pattern similarity scheme for medical image retrieval. IEEE Trans. Inf. Tech. Biomed. 13(4), 442–450 (2009)

    Article  Google Scholar 

  5. Yang, L., Jin, R., Mummert, L., Sukthankar, R., Goode, A., Zheng, B., Hoi, S.C.H., Satyanarayanan, M.: A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 30–44 (2010)

    Article  Google Scholar 

  6. Xu, X., Lee, D.J., Antani, S., Long, L.R.: A spine X-Ray image retrieval system using partial shape matching. IEEE Trans. Inf. Tech. Biomed. 12(1), 100–108 (2008)

    Article  Google Scholar 

  7. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  8. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)

    Article  MathSciNet  Google Scholar 

  9. Murala, S., Wu, Q.M.J.: Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119, 399–412 (2013)

    Article  Google Scholar 

  10. Murala, S., Wu, Q.M.J.: Peak valley edge patterns: a new descriptor for biomedical image indexing and retrieval. In: CVPR, pp. 444–449 (2013)

    Google Scholar 

  11. Murala, S., Wu, Q.M.J.: Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Biomed. Health Inform. 18(3), 929–938 (2014)

    Article  Google Scholar 

  12. Dubey, S.R., Singh, S.K., Singh, R.K.: Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process. Lett. 22(9), 1215–1219 (2015)

    Article  Google Scholar 

  13. Dubey, S.R., Singh, S.K., Singh, R.K.: Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval. IEEE J. Biomed. Health Inform. 20(4), 1139–1147 (2016)

    Article  Google Scholar 

  14. Deep, G., Kaur, L., Gupta, S.: Directional local ternary quantized extrema pattern: a new descriptor for biomedical image indexing and retrieval. Eng. Sci. Technol. Int. J. 19(4), 1895–1909 (2016)

    Google Scholar 

  15. Shinde, A.A., Rahulkar, A.D., Patil, C.Y.: Local neighboring binary pattern: a new feature descriptor for biomedical image indexing and retrieval. IEEE ICSIP (2017). https://doi.org/10.1109/SIPROCESS.2017.8124524

    Article  Google Scholar 

  16. Murala, S., Maheshwari, R.P., Balasubramanian, R.: Directional binary wavelet patterns for biomedical image indexing and retrieval. J. Med. Syst. 36(5), 2865–2879 (2012)

    Article  Google Scholar 

  17. Swanson, M.D., Tewfik, A.H.: A binary wavelet decomposition of binary images. IEEE Trans. Image Process. 5(12), 1637–1650 (1996)

    Article  Google Scholar 

  18. Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.: Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans. Image Process. 21(4), 1613–1623 (2012)

    Article  MathSciNet  Google Scholar 

  19. Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.: Wavelet optimization for content-based image retrieval in medical databases. Med. Image Anal. 14(2), 227–241 (2010)

    Article  Google Scholar 

  20. Dubey, S.R., Singh, S.K., Singh, R.K.: Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans. Image Process. 24(12), 5892–5903 (2015)

    Article  MathSciNet  Google Scholar 

  21. Shinde, A.A., Rahulkar, A.D., Patil, C.Y.: Fast discrete curvelet transform-based anisotropic feature extraction for biomedical image indexing and retrieval. Int. J. Multimed. Inf. Retrieval 6(4), 281–288 (2017). https://doi.org/10.1007/s13735-017-0132-0

    Article  Google Scholar 

  22. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  Google Scholar 

  23. Po, D.Y., Do, M.N.: Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Process. 15(6), 1610–1620 (2006)

    Article  MathSciNet  Google Scholar 

  24. Rouhafzay, A., Baaziz, N., Diop, M.: Contourlet versus Gabor transform for texture feature extraction and image retrieval. In: IEEE 12th International Conference on Signal-Image Technology & Internet Based Systems (2016). https://doi.org/10.1109/sitis.2016.63

  25. Kumar, T.G.S., Nagarajan, V.: Combining LBP and contourlet features for image retrieval. In: IEEE International Conference on Communication and Signal Processing (2016)

    Google Scholar 

  26. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Article  Google Scholar 

  27. Bamberger, R.H., Smith, M.J.T.: A filter bank for the directional decomposition of images: theory and design. IEEE Trans. Signal Process. 40(4), 882–893 (1992)

    Article  Google Scholar 

  28. OASIS-MRI image database. http://www.oasis-brains.org/

  29. NEMA-CT image database. ftp://medical.nema.org/medical/Dicom/Multiframe/CT

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amita A. Shinde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shinde, A.A., Rahulkar, A.D., Patil, C.Y. (2020). Directional Multiscale Feature Extraction for Biomedical Image Indexing and Retrieval Using Contourlet Transform. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-16657-1_15

Download citation

Publish with us

Policies and ethics