Abstract
Multiscale and multidirectional are desirable properties for image decomposition. This paper presents directional multiscale feature extraction for biomedical image indexing and retrieval using contourlet transform. The contourlet transform decomposed image at multiscale in directional sub-bands. The feature vector of each contourlet sub-band is calculated by computing the directional energies of the extracted coefficients of respective sub-band. The final feature vector is constructed by concatenating feature vectors of all contourlet sub-bands. The similarity between query feature vector and feature vector of database is calculated using Manhattan distance. The feature extraction time and feature vector length are reduced significantly using proposed method. The effectiveness of the proposed method is evaluated by conducting the experiments on two well-known biomedical databases: Open access series of imaging studies (OASIS) MRI and NEMA-CT. The average retrieval precision (ARP) and average retrieval rate (ARR) are used to measure the performance of the proposed method. The experimental results show that the proposed method outperforms well-known existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cai, W., Kim, J., Feng, D.D.: Content based medical image retrieval. In: Biomedical Information Technology, pp. 83–113. Elsevier (2008)
Kumar, A., Kim, J., Cai, W., Fulham, M., Feng, D.: Content based medical image retrieval: a survey of applications to multidimensional and multimodality data. J. Digit. Imaging 26, 1025–1039 (2013)
Unay, D., Ekin, A., Jasinschi, R.: Local structure-based region-of-interest retrieval in brain MR images. IEEE Trans. Inf. Tech. Biomed. 14(4), 897–903 (2009)
Iakovidis, D.K., Pelekis, N., Kotsifakos, E.E., Kopanakis, I., Karanikas, H., Theodoridis, Y.: A pattern similarity scheme for medical image retrieval. IEEE Trans. Inf. Tech. Biomed. 13(4), 442–450 (2009)
Yang, L., Jin, R., Mummert, L., Sukthankar, R., Goode, A., Zheng, B., Hoi, S.C.H., Satyanarayanan, M.: A boosting framework for visuality-preserving distance metric learning and its application to medical image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 30–44 (2010)
Xu, X., Lee, D.J., Antani, S., Long, L.R.: A spine X-Ray image retrieval system using partial shape matching. IEEE Trans. Inf. Tech. Biomed. 12(1), 100–108 (2008)
Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recogn. 29(1), 51–59 (1996)
Murala, S., Maheshwari, R.P., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content based image retrieval. IEEE Trans. Image Process. 21(5), 2874–2886 (2012)
Murala, S., Wu, Q.M.J.: Local ternary co-occurrence patterns: a new feature descriptor for MRI and CT image retrieval. Neurocomputing 119, 399–412 (2013)
Murala, S., Wu, Q.M.J.: Peak valley edge patterns: a new descriptor for biomedical image indexing and retrieval. In: CVPR, pp. 444–449 (2013)
Murala, S., Wu, Q.M.J.: Local mesh patterns versus local binary patterns: biomedical image indexing and retrieval. IEEE J. Biomed. Health Inform. 18(3), 929–938 (2014)
Dubey, S.R., Singh, S.K., Singh, R.K.: Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Signal Process. Lett. 22(9), 1215–1219 (2015)
Dubey, S.R., Singh, S.K., Singh, R.K.: Local bit-plane decoded pattern: a novel feature descriptor for biomedical image retrieval. IEEE J. Biomed. Health Inform. 20(4), 1139–1147 (2016)
Deep, G., Kaur, L., Gupta, S.: Directional local ternary quantized extrema pattern: a new descriptor for biomedical image indexing and retrieval. Eng. Sci. Technol. Int. J. 19(4), 1895–1909 (2016)
Shinde, A.A., Rahulkar, A.D., Patil, C.Y.: Local neighboring binary pattern: a new feature descriptor for biomedical image indexing and retrieval. IEEE ICSIP (2017). https://doi.org/10.1109/SIPROCESS.2017.8124524
Murala, S., Maheshwari, R.P., Balasubramanian, R.: Directional binary wavelet patterns for biomedical image indexing and retrieval. J. Med. Syst. 36(5), 2865–2879 (2012)
Swanson, M.D., Tewfik, A.H.: A binary wavelet decomposition of binary images. IEEE Trans. Image Process. 5(12), 1637–1650 (1996)
Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.: Fast wavelet-based image characterization for highly adaptive image retrieval. IEEE Trans. Image Process. 21(4), 1613–1623 (2012)
Quellec, G., Lamard, M., Cazuguel, G., Cochener, B., Roux, C.: Wavelet optimization for content-based image retrieval in medical databases. Med. Image Anal. 14(2), 227–241 (2010)
Dubey, S.R., Singh, S.K., Singh, R.K.: Local wavelet pattern: a new feature descriptor for image retrieval in medical CT databases. IEEE Trans. Image Process. 24(12), 5892–5903 (2015)
Shinde, A.A., Rahulkar, A.D., Patil, C.Y.: Fast discrete curvelet transform-based anisotropic feature extraction for biomedical image indexing and retrieval. Int. J. Multimed. Inf. Retrieval 6(4), 281–288 (2017). https://doi.org/10.1007/s13735-017-0132-0
Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)
Po, D.Y., Do, M.N.: Directional multiscale modeling of images using the contourlet transform. IEEE Trans. Image Process. 15(6), 1610–1620 (2006)
Rouhafzay, A., Baaziz, N., Diop, M.: Contourlet versus Gabor transform for texture feature extraction and image retrieval. In: IEEE 12th International Conference on Signal-Image Technology & Internet Based Systems (2016). https://doi.org/10.1109/sitis.2016.63
Kumar, T.G.S., Nagarajan, V.: Combining LBP and contourlet features for image retrieval. In: IEEE International Conference on Communication and Signal Processing (2016)
Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)
Bamberger, R.H., Smith, M.J.T.: A filter bank for the directional decomposition of images: theory and design. IEEE Trans. Signal Process. 40(4), 882–893 (1992)
OASIS-MRI image database. http://www.oasis-brains.org/
NEMA-CT image database. ftp://medical.nema.org/medical/Dicom/Multiframe/CT
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Shinde, A.A., Rahulkar, A.D., Patil, C.Y. (2020). Directional Multiscale Feature Extraction for Biomedical Image Indexing and Retrieval Using Contourlet Transform. In: Abraham, A., Cherukuri, A.K., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 940. Springer, Cham. https://doi.org/10.1007/978-3-030-16657-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-16657-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16656-4
Online ISBN: 978-3-030-16657-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)