Abstract
Data Mining has received a great momentum of interest due to the automatic processes transforming big amount of data into novel, valid, useful, and structured knowledge by detecting concealed patterns and relationships in data. However, embedded knowledge has not been thoroughly considered in data mining. The chapters reported in this book discuss on several facets of embedded knowledge and propose solutions for data mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amiriparian, S., Pugachevskiy, S., Cummins, N., Hantke, S., Pohjalainen, J., Keren, G., Schuller, B.: CAST a database: rapid targeted large-scale big data acquisition via small-world modelling of social media platforms. In: Proceedings Biannual Conference on Affective Computing and Intelligent Interaction(ACII), San Antonio, TX, pp. 340–345 (2017)
Amiriparian, S., Schmitt, M., Hantke, S., Pandit, V., Schuller, B.: Humans inside: cooperative big multimedia data mining. This volume (2019)
Baron-Cohen, S., Wheelwright, S.: The empathy quotient: an investigation of adults with asperger syndrome or high functioning autism, and normal sex differences. J. Autism Dev. Disord. 34(2), 163–175 (2004)
Baron-Cohen, S., Richler, J., Bisarya, D., Gurunathan, N., Wheelwright, S.: The systemizing quotient: an investigation of adults with asperger syndrome or high functioning autism, and normal sex differences. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358(1430), 361–374 (2003)
Barsalou, L.W., Niedenthal, P.M., Barbey, A.K., Ruppert, J.A.: Social embodiment. In: Ross, B.H. (ed.) The Psychology of Learning and Motivation, 43, 43–92. San Diego, Academic Press (2003)
Bellandi, V., Ceravolo, P., Damiani, E., Tacchini, E.: Designing a recommender system for touristic activities in a big data as a service platform. This volume (2019)
Berrada, G., van Keulen, M., Habib, M.: Hadoop for EEG storage and processing: a feasibility study. In: Brain Informatics and Health, 218–230 (2014)
Böck, R., Egorow, O., Höbel-Müller, J., Flores-Requardt, A., Siegert, I., Wendemuth, A.: Anticipating the user: acoustic disposition recognition in intelligent interactions. This volume (2019)
Botha, A., Kourie, D., Snyman, R.: Coping with Continuous Change in the Business Environment, Knowledge Management and Knowledge Management Technology. Chandice Publishing Ltd., London (2008)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Davis, R., Mauer, L.J.: Fourier transform infrared (FTIR)-spectroscopy: a rapid tool for detection and analysis of foodborne pathogenic bacteria. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2, 1582–1594 (2010)
Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1), 72 (2010)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B. 39(1), 1–38 (1977). JSTOR 2984875. MR 0501537
Esposito, A.: COST 2102: cross-modal analysis of verbal and nonverbal communication (CAVeNC). In: Esposito, A. et al. (eds.) Verbal and nonverbal communication behaviours, LNCS, vol. 4775, 1–10, Springer, Basel, Switzerland (2007)
Esposito, A., Fortunati, L., Lugano, G.: Modeling emotion, behaviour and context in socially believable robots and ICT interfaces. Cogn. Comput. 6(4), 623–627 (2014)
Esposito, A., Esposito, A.M.: On the recognition of emotional vocal expressions: motivations for an holistic approach. Cogn. Process. 13(2), 541–550 (2012)
Fortunati, L., Esposito, A., Lugano, G.: Beyond Industrial robotics: social robots entering public and domestic spheres. Inf. Soc. 31(3), 229–23 (2015)
Gamble, P.R., Blackwell, J.: Knowledge Management: A State of the Art Guide. London, Kogan Page (2001)
Ganimian, A.J., Koretz, D.M.: Dataset of International Large-Scale Assessments. Cambridge, Harvard Graduate School of Education (2017). Last updated: 8 Feb 2017
Gnjatović, M.: Conversational agents and negative lessons from behaviourism. This volume (2019)
Gustafsson, J.-E.: Effects of international comparative studies on educational quality on the quality of educational research. Eur. Educ. Res. J. 7(1), 1–17 (2008). www.wwwords.eu/EERJ
Hantke, S., Appel, T., Schuller, B.: The inclusion of gamification solutions to enhance user enjoyment on crowdsourcing platforms. In: Proceedings of the 1st Asian Conference on Affective Computing and Intelligent Interaction (ACII Asia 2018), IEEE, Beijing, People’s Republic of China (2018)
Hofstede, G.: Culture’s Consequences: Comparing Values, Behaviors, Institutions and Organizations Across Nations. 2nd edn, Thousand Oaks, Sage (2001)
Hofstede, G.: Dimensionalizing cultures: the Hofstede model in context. Online Readings in Psychol. Cult. 2(1) (2011). https://doi.org/10.9707/2307-0919.1014
Kamath, U., Domeniconi, C., Shehu, A., De Jong, K.: EML: a scalable, transparent meta-learning paradigm for big data applications. This volume (2019)
Kapros, E.: Towards addressing the limitations of educational policy based on international large-scale assessment data with Castoriadean magmas. This volume (2019)
Kemsley, E.K., Holland, J.K., Defernez, M., Wilson, R.H.: Detection of adulteration of raspberry purees using infrared spectroscopy and chemometrics. J. Agric. Food Chem. 44, 3864–3870 (1996)
Koutsombogera, M., Vogel, C.: Speech pause patterns in collaborative dialogs. This volume (2019)
Leonardi, G., Montani, S., Portinale, L., Quaglini, S., Striani, M.: Discovering knowledge embedded in bio-medical databases: experiences in food characterization and in medical process mining. This volume (2019)
Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
Madden, S.: From databases to big data. IEEE Internet Comput. 16, 4–6 (2012)
Moreau, E., Vogel, C., Barry, M.: A paradigm for democratizing artificial intelligence research. This volume (2019)
Navarretta, C., Oemig, L.: Big data and multimodal communication: a perspective view. This volume (2019)
Nonaka, I.: Theory of organizational knowledge creation. Organ. Sci. 5(1), 14–37 (1994)
Placidi, G., Cinque, L., Polsinelli, M.: A web application for characterizing spontaneous emotions using long EEG recording sessions. This volume (2019)
Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A. (eds.) Advances in Kernel Methods, 185–208. Cambridge, MIT Press (1999)
Smith, E.R., Semin, G.R.: Socially situated cognition: cognition in its social context. Adv. Exp. Soc. Psychol. 36, 53–117 (2004)
Squartini, S., Esposito, A.: CO-worker: toward real-time and context-aware systems for human collaborative knowledge building. Cogn. Comput. 4(2), 157–171 (2012). https://doi.org/10.1007/s12559-012-9136-5
Vinciarelli, A., Riviera, W., Dalmasso, F., Raue, S., Abeyratna, C.: What do prospective students want? An observational study of preferences about subject of study in higher education. This volume (2019)
Vinciarelli, A., Esposito, A., André, E., Bonin, F., Chetouani, M., Cohn, J.F., Cristan, M., Fuhrmann, F., Gilmartin, E., Hammal, Z., Heylen, D., Kaiser, R., Koutsombogera, M., Potamianos, A., Renals, S., Riccardi, G., Salah, A.A.: Open challenges in modelling, analysis and synthesis of human behaviour in human-human and human-machine interactions. Cogn. Comput. 7(4), 397–413 (2015)
Vogel, C., Esposito, A.: Advancing and validating models of cognitive architecture, unpublished manuscript (2017)
Wagemaker, H.: International large-scale assessments: from research to policy. In: Rutkowski, L. et al. (eds.) Handbook of International Large-Scale Assessment. Background, Technical Issues, and Methods of Data Analysis, 11–36. Boca Raton, CRC Press (2014). https://ilsa-gateway.org/ilsa-in-education
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Esposito, A., Esposito, A.M., Jain, L.C. (2019). More Than Data Mining. In: Esposito, A., Esposito, A., Jain, L. (eds) Innovations in Big Data Mining and Embedded Knowledge. Intelligent Systems Reference Library, vol 159. Springer, Cham. https://doi.org/10.1007/978-3-030-15939-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-15939-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15938-2
Online ISBN: 978-3-030-15939-9
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)