Abstract
The chapter shines a light on the strong links shared by Artificial intelligence and Bioinformatics since many years. Bioinformatics offers many NP-hard problems that are challenging for Artificial intelligence and we introduce a selection of them to illustrate the vitality of the field and provide a gentle introduction for people interested in its research questions. Together with the framing of questions, we point to several achievements and progresses made in the literature with the hope it can help the bioinformatician, bioanalyst or biologist to have access to state of the art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdallah EB, Folschette M, Roux O, Magnin M (2017) ASP-based method for the enumeration of attractors in non-deterministic synchronous and asynchronous multi-valued networks. Algorithms Mol Biol 12(1):20
Abdo A, Chen B, Mueller C, Salim N, Willett P (2010) Ligand-based virtual screening using Bayesian networks. J Chem Inf Model 50(6):1012–1020
Abdo A, Leclère V, Jacques P, Salim N, Pupin M (2014) Prediction of new bioactive molecules using a Bayesian belief network. J Chem Inf Model 54(1):30–36. PMID: 24392938
Abou-Jaoudé W, Traynard P, Monteiro PT, Saez-Rodriguez J, Helikar T, Thieffry D, Chaouiya C (2016) Logical modeling and dynamical analysis of cellular networks. Front Genet 7
Abu-Srhan A, Al Daoud E (2013) A hybrid algorithm using a genetic algorithm and cuckoo search algorithm to solve the traveling salesman problem and its application to multiple sequence alignment. Int J Adv Sci Technol 61:29–38
Acuna V, Chierichetti F, Lacroix V, Marchetti-Spaccamela A, Sagot M-F, Stougie L (2009) Modes and cuts in metabolic networks: complexity and algorithms. Biosystems 95(1):51–60
Adhikari B, Bhattacharya D, Cao R, Cheng J (2015) CONFOLD: residue-residue contact-guided ab initio protein folding. Proteins: Struct Funct Bioinform 83(8):1436–1449
Akutsu T (2010) A bisection algorithm for grammar-based compression of ordered trees. Inf Process Lett 110(18–19):815–820
Akutsu T, Hayashida M, Ching W-K, Ng MK (2007) Control of boolean networks: hardness results and algorithms for tree structured networks. J Theor Biol 244(4):670–679
Akutsu T, Kosub S, Melkman AA, Tamura T (2012) Finding a periodic attractor of a Boolean network. IEEE/ACM Trans Comput Biol Bioinform 9(5):1410–1421
Albert R, Thakar J (2014) Boolean modeling: a logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions. Wiley Interdiscip Rev: Syst Biol Med 6(5):353–369
Allouche D, André I, Barbe S, Davies J, de Givry S, Katsirelos G, O’Sullivan B, Prestwich S, Schiex T, Traoré S (2014) Computational protein design as an optimization problem. Artif Intell 212:59–79
Alocci D, Mariethoz J, Horlacher O, Bolleman JT, Campbell MP, Lisacek F (2015) Property graph vs RDF triple store: a comparison on glycan substructure search. PLOS ONE 10(12):1–17
Aniba MR, Poch O, Marchler-Bauer A, Thompson JD (2010) Alexsys: a knowledge-based expert system for multiple sequence alignment construction and analysis. Nucleic Acids Res 38(19):6338
Antonov I, Borodovsky M (2010) Genetack: frameshift identification in protein-coding sequences by the viterbi algorithm. J Bioinform Comput Biol 8(03):535–551
Aoki-Kinoshita KF (2015) Analyzing glycan-binding patterns with the ProfilePSTMM tool. Springer, New York, pp 193–202
Aoki-Kinoshita KF, Ueda N, Mamitsuka H, Kanehisa M (2006) ProfilePSTMM: capturing tree-structure motifs in carbohydrate sugar chains. Bioinformatics 22(14):e25–e34
Arellano G, Argil J, Azpeitia E, Benítez M, Carrillo M, Góngora P, Rosenblueth DA, Alvarez-Buylla ER (2011) Antelope: a hybrid-logic model checker for branching-time Boolean GRN analysis. BMC Bioinformatics 12(1):490
Aronson SJ, Rehm HL (2015) Building the foundation for genomics in precision medicine. Nature 526(7573):336–342
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29
Awada W, Khoshgoftaar TM, Dittman D, Wald R, Napolitano A (2012) A review of the stability of feature selection techniques for bioinformatics data. In: 2012 IEEE 13th International conference on information reuse and integration (IRI). IEEE, pp 356–363
Backofen R, Will S (2006) A constraint-based approach to fast and exact structure prediction in three-dimensional protein models. Constraints 11(1):5–30
Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach. MIT Press, Cambridge
Ballester PJ, Mitchell JBO (2010) A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking. Bioinformatics 26(9):1169–1175
Banerjee P, Siramshetty VB, Drwal MN, Preissner R (2016) Computational methods for prediction of in vitro effects of new chemical structures. J Cheminformatics 8(1):51
Barahona P, Krippahl L (2008) Constraint programming in structural bioinformatics. Constraints 13(1):3–20
Barberis M, Todd RG, van der Zee L (2017) Advances and challenges in logical modeling of cell cycle regulation: perspective for multi-scale, integrative yeast cell models. FEMS Yeast Res 17(1)
Bard JB, Rhee SY (2004) Ontologies in biology: design, applications and future challenges. Nat Rev Genet 5(3):213
Baron M, Yanai I (2017) New skin for the old rna-seq ceremony: the age of single-cell multi-omics. Genome Biol 18(1):159
Batt G, De Jong H, Page M, Geiselmann J (2008) Symbolic reachability analysis of genetic regulatory networks using discrete abstractions. Automatica 44(4):982–989
Batt G, Besson B, Ciron P-E, de Jong H, Dumas E, Geiselmann J, Monte R, Monteiro PT, Page M, Rechenmann F, Ropers D (2012) Genetic network analyzer: a tool for the qualitative modeling and simulation of bacterial regulatory networks. Springer, New York, pp 439–462
Baú D, Martin AJ, Mooney C, Vullo A, Walsh I, Pollastri G (2006) Distill: a suite of web servers for the prediction of one-, two- and three-dimensional structural features of proteins. BMC Bioinform 7(1):402
Bechhofer S, Buchan I, De Roure D, Missier P, Ainsworth J, Bhagat J, Couch P, Cruickshank D, Delderfield M, Dunlop I et al (2013) Why linked data is not enough for scientists. Future Gener Comput Syst 29(2):599–611
Bellazzi R (2014) Big data and biomedical informatics: a challenging opportunity. Yearb Med Inform 9(1):8
Benigni R, Bossa C (2008) Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology. Mutat Res/Rev Mutat Res 659(3):248–261
Beretta S, Bonizzoni P, Vedova GD, Pirola Y, Rizzi R (2014) Modeling alternative splicing variants from RNA-seq data with isoform graphs. J Comput Biol 21(1):16–40
Berger B, Leighton T (1998) Protein folding in the hydrophobic-hydrophilic (HP) model is NP-complete. J Comput Biol 5(1):27–40
Bhaskar H, Hoyle DC, Singh S (2006) Machine learning in bioinformatics: a brief survey and recommendations for practitioners. Comput Biol Med 36(10):1104–1125. Intelligent technologies in medicine and bioinformatics intelligent technologies in medicine and bioinformatics
Bizer C, Heath T, Berners-Lee T (2009) Linked data-the story so far. Int J Semant Web Inf Syst 5(3):1–22
Blake JA, Bult CJ (2006) Beyond the data deluge: data integration and bio-ontologies. J Biomed Inform 39(3):314–320. Biomedical ontologies
Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41(W1):W406–W411
Blaszczyk M, Gront D, Kmiecik S, Ziolkowska K, Panek M, Kolinski A (2014) Coarse-grained protein models in structure prediction. Springer, Berlin, pp 25–53
Bock C, Farlik M, Sheffield NC (2016) Multi-omics of single cells: strategies and applications. Trends Biotechnol 34
Bonizzoni P, Ciccolella S, Della Vedova G, Soto M (2017) Beyond perfect phylogeny: multisample phylogeny reconstruction via ILP. In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology, and health informatics, ACM-BCB ’17, ACM, New York, USA, pp 1–10
Bouziane H, Messabih B, Chouarfia A (2015) Effect of simple ensemble methods on protein secondary structure prediction. Soft Comput 19(6):1663–1678
Boyer F, Viari A (2003) Ab initio reconstruction of metabolic pathways. Bioinformatics 19(suppl\(\_{2}\)):ii26–ii34
Brahim AB, Limam M (2017) Ensemble feature selection for high dimensional data: a new method and a comparative study. Adv Data Anal Classif 1–16
Brim L, Češka M, Šafránek D (2013) Model checking of biological systems. In: Formal methods for dynamical systems. Springer, Berlin, pp 63–112
Brooks DR, Erdem E, Erdoğan ST, Minett JW, Ringe D (2007) Inferring phylogenetic trees using answer set programming. J Autom Reason 39(4):471–511
Brown JB, Niijima S, Okuno Y (2013) Compound protein interaction prediction within chemogenomics: theoretical concepts, practical usage, and future directions. Mol Inform 32(11–12):906–921
Cannata N, Schröder M, Marangoni R, Romano P (2008) A semantic web for bioinformatics: goals, tools, systems, applications. BMC Bioinform 9(4):S1
Caravagna G, Graudenzi A, Ramazzotti D, Sanz-Pamplona R, De Sano L, Mauri G, Moreno V, Antoniotti M, Mishra B (2016) Algorithmic methods to infer the evolutionary trajectories in cancer progression. Proc Natl Acad Sci 113(28):E4025–E4034
Carrillo M, Góngora PA, Rosenblueth DA (2012) An overview of existing modeling tools making use of model checking in the analysis of biochemical networks. Front Plant Sci 3
Chapman SD, Adami C, Wilke CO, KC DB (2017) The evolution of logic circuits for the purpose of protein contact map prediction. PeerJ 5:e3139
Chauhan JS, Rao A, Raghava GPS (2013) In silico platform for prediction of N-, O- and C-glycosites in eukaryotic protein sequences. PLOS ONE 8(6):1–10
Chelliah V, Juty N, Ajmera I, Ali R, Dumousseau M, Glont M, Hucka M, Jalowicki G, Keating S, Knight-Schrijver V, Lloret-Villas A, Natarajan KN, Pettit J-B, Rodriguez N, Schubert M, Wimalaratne SM, Zhao Y, Hermjakob H, Le Novère N, Laibe C (2015) BioModels: ten-year anniversary. Nucleic Acids Res 43(D1):D542–D548
Chen L, Liu H, Friedman C (2005) Gene name ambiguity of eukaryotic nomenclatures. Bioinformatics 21(2):248–256
Chen Q, Chen Y-PP, Zhang C (2007) Detecting inconsistency in biological molecular databases using ontologies. Data Min Knowl Discov 15:275–296
Cheng J, Baldi P (2007) Improved residue contact prediction using support vector machines and a large feature set. BMC Bioinform 8(1):113
Chen M, Yu S, Franz N, Bowers S, Ludäscher B (2013) Euler/X:a toolkit for logic-based taxonomy integration. Technical report 1306, 22nd International workshop on functional and (Constraint) logic programming, Technische Berichte des Instituts fur Informatik der Christian-Albrechts-Universitat zu Kiel
Clark C, Divvala S (2016) Pdffigures 2.0: mining figures from research papers. In: 2016 IEEE/ACM joint conference on digital libraries (JCDL). IEEE, pp 143–152
Coluzza I (2017) Computational protein design: a review. J Phys: Condens Matter 29(14):143001
Coste F (2016) Learning the language of biological sequences. Springer, Berlin, pp 215–247
Cruz-Monteagudo M, Medina-Franco JL, Perez-Castillo Y, Nicolotti O, Cordeiro MND, Borges F (2014) Activity cliffs in drug discovery: Dr. Jekyll or Mr. Hyde? Drug Discov Today 19(8):1069–1080
Cuff JA, Barton GJ (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins: Struct Funct Bioinform 40(3):502–511
Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB (2015) Current peptidomics: applications, purification, identification, quantification, and functional analysis. PROTEOMICS 15(5–6):1026–1038
De Brevern A, Etchebest C, Hazout S (2000) Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins: Struct Funct Bioinform 41(3):271–287
De Raedt L, Kramer S (2001) The levelwise version space algorithm and its application to molecular fragment finding. In: Proceedings of the 17th international joint conference on artificial intelligence - volume 2, IJCAI’01. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp 853–859
Deagustini CAD, Martinez MV, Falappa MA, Simari GR (2016) Datalog\(+\)-ontology consolidation. J Artif Intell Res 56:613–656
Diaz-Uriarte R (2007) GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest. BMC Bioinform 8(1):328
Dimova D, Bajorath J (2016) Advances in activity cliff research. Mol Inform 35(5):181–191
Doğan B, Ölmez T (2015) A novel state space representation for the solution of 2D-HP protein folding problem using reinforcement learning methods. Appl Soft Comput 26:213–223
Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) Jpred4: a protein secondary structure prediction server. Nucleic Acids Res 43(W1):W389–W394
Dubey SP, Kini NG, Balaji S, Kumar MS (2017) Protein structure prediction on 2D square HP lattice with revised fitness function. In: 2017 International conference on advances in computing, communications and informatics (ICACCI), pp 1732–1736
Dubrova E, Teslenko M (2011) A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinform 8(5):1393–1399
Dunn S, Wahl L, Gloor G (2008) Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 24(3):333–340
Eddy SR (1998) Profile hidden Markov models. Bioinformatics (Oxford, England) 14(9):755–763
El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ (2015) Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics 31(12):i62–i70
Erdem E (2011) Applications of answer set programming in phylogenetic systematics. Springer, Berlin, pp 415–431
Faraggi E, Kloczkowski A (2017) Accurate prediction of one-dimensional protein structure features using SPINE-X. Springer, New York, pp 45–53
Faraggi E, Zhang T, Yang Y, Kurgan L, Zhou Y (2012) SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J Comput Chem 33(3):259–267
Feigenbaum EA, Buchanan BG (1993) Dendral and meta-dendral: roots of knowledge systems and expert system applications. Artif Intell 59(1):233–240
Feig M, Rotkiewicz P, Kolinski A, Skolnick J, Brooks CL (2000) Accurate reconstruction of all-atom protein representations from side-chain-based low-resolution models. Proteins: Struct Funct Bioinform 41(1):86–97
Ferreira LG, dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421
Ford E, St. John K, Wheeler WC, (2015) Towards improving searches for optimal phylogenies. Syst Biol 64(1):56–65
Frank M, Schloissnig S (2010) Bioinformatics and molecular modeling in glycobiology. Cell Mol Life Sci 67(16):2749–2772
Franz NM, Chen M, Yu S, Kianmajd P, Bowers S, Ludäscher B (2015) Reasoning over taxonomic change: exploring alignments for the Perelleschus use case. PLOS ONE 10(2):1–34
Galiez C, Magnan CN, Coste F, Baldi P (2016) VIRALpro: a tool to identify viral capsid and tail sequences. Bioinformatics 32(9):1405–1407
Galperin MY, Fernández-Suárez XM, Rigden DJ (2017) The 24th annual nucleic acids research database issue: a look back and upcoming changes. Nucleic Acids Res 45(D1):D1
Gan X, Kapsokalivas L, Albrecht AA, Steinhöfel K (2008) A symmetry-free subspace for ab initio protein folding simulations. Bioinformatics research and development. Springer, Berlin, pp 128–139
Gao Y, Wang S, Deng M, Xu J (2017) Real-value and confidence prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning. bioRxiv
Gawad C, Koh W, Quake SR (2016) Single-cell genome sequencing: current state of the science. Nat Rev Genet 17(3):175
Gawehn E, Hiss JA, Schneider G (2016) Deep learning in drug discovery. Mol Inform 35(1):3–14
Gertheiss J, Tutz G (2009) Supervised feature selection in mass spectrometry-based proteomic profiling by blockwise boosting. Bioinformatics 25(8):1076–1077
Ghisalberti G, Masseroli M, Tettamanti L (2010) Quality controls in integrative approaches to detect errors and inconsistencies in biological databases. J Integr Bioinform 7(3):52–64
Ghoorah AW, Devignes M-D, Smaïl-Tabbone M, Ritchie DW (2013) Protein docking using case-based reasoning. Proteins: Struct Funct Bioinform 81(12):2150–2158
Gonnet GH, Korostensky C, Benner S (2000) Evaluation measures of multiple sequence alignments. J Comput Biol 7(1–2):261–276
Gordon JJ, Towsey MW, Hogan JM, Mathews SA, Timms P (2005) Improved prediction of bacterial transcription start sites. Bioinformatics 22(2):142–148
Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talón M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435
Greene D, Richardson S, Turro E (2017) OntologyX: a suite of R packages for working with ontological data. Bioinformatics 33(7):1104–1106
Grivell L (2002) Mining the bibliome: searching for a needle in a haystack? EMBO Rep 3(3):200–203
Gront D, Kmiecik S, Koliński A, Meinke JH, Zimmermann MT, Mohanty S, Hansmann UHE (2006) High throughput method for protein structure prediction. In: NIC workshop 2006: from computational biophysics to system biology, vol 34. John von Neumann institute for computing, Julich, pp 79–82
Guan Y, Myers CL, Hess DC, Barutcuoglu Z, Caudy AA, Troyanskaya OG (2008) Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biol 9(S1):S3
Guermeur Y, Geourjon C, Gallinari P, Deléage G (1999) Improved performance in protein secondary structure prediction by inhomogeneous score combination. Bioinformatics 15(5):413–421
Guo Y, Tao F, Wu Z, Wang Y (2017) Hybrid method to solve HP model on 3D lattice and to probe protein stability upon amino acid mutations. BMC Syst Biol 11(4):93
Gupta SK, Kececioglu JD, Schäffer AA (1995) Improving the practical space and time efficiency of the shortest-paths approach to sum-of-pairs multiple sequence alignment. J Comput Biol 2(3):459–472
Gusfield D (2015) Persistent phylogeny: a galled-tree and integer linear programming approach. In: Proceedings of the 6th ACM conference on bioinformatics, computational biology and health informatics, BCB ’15, ACM, New York, USA, pp 443–451
Han Y, Gao S, Muegge K, Zhang W, Zhou B (2015) Advanced applications of RNA sequencing and challenges. Bioinform Biol Insights 9s1:BBI.S28991
Hassanien A-E, Milanova MG, Smolinski TG, Abraham A (2008) Computational intelligence in solving bioinformatics problems: reviews, perspectives, and challenges. Springer, Berlin, pp 3–47
Hassanien AE, Al-Shammari ET, Ghali NI (2013) Computational intelligence techniques in bioinformatics. Comput Biol Chem 47:37–47
Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C (2013) The chebi reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41(D1):D456–D463
Hatem M, Ruml W (2013) External memory best-first search for multiple sequence alignment. In: 27th AAAI conference on artificial intelligence
Hayes-Roth B, Buchanan BG, Lichtarge O, Hewitt M, Altman RB, Brinkley JF, Cornelius C, Duncan BS, Jardetzky O (1986) PROTEAN: deriving protein structure from constraints. In: AAAI, pp 904–909
Heffernan R, Paliwal K, Lyons J, Dehzangi A, Sharma A, Wang J, Sattar A, Yang Y, Zhou Y (2015) Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning. Sci Rep 5:11476
Helma C, Kramer S, Luc DR (2002) The molecular feature miner MOLFEA. In: Proceedings of the Beilstein workshop 2002: molecular informatics: confronting complexity; Beilstein Institut, pp 79–93
Hinselmann G, Rosenbaum L, Jahn A, Fechner N, Ostermann C, Zell A (2011) Large-scale learning of structure- activity relationships using a linear support vector machine and problem-specific metrics. J Chem Inf Model 51(2):203–213
Hirschman L, Park JC, Tsujii J, Wong L, Wu CH (2002) Accomplishments and challenges in literature data mining for biology. Bioinformatics 18(12):1553–1561
Hoehndorf R, Slater L, Schofield PN, Gkoutos GV (2015) Aber-owl: a framework for ontology-based data access in biology. BMC Bioinform 16(1):26
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M (2015) Braker1: unsupervised rna-seq-based genome annotation with genemark-et and augustus. Bioinformatics 32(5):767–769
Hoff K, Stanke M (2015) Current methods for automated annotation of protein-coding genes. Curr Opin Insect Sci 7(Supplement C):8–14. Insect genomics * Development and regulation
Holzinger A, Dehmer M, Jurisica I (2014) Knowledge discovery and interactive data mining in bioinformatics-state-of-the-art, future challenges and research directions. BMC Bioinform 15(6):I1
Hosoda M, Akune Y, Aoki-Kinoshita KF (2017) Development and application of an algorithm to compute weighted multiple glycan alignments. Bioinformatics 33(9):1317–1323
Huang DW, Sherman BT, Lempicki RA (2008) Systematic and integrative analysis of large gene lists using David bioinformatics resources. Nat Protoc 4(1):44
Hundley L, Lederberg J, Levinthal E (1963) Multivator- a biochemical laboratory for Martian experiments. Technical report NSG-81-60, NASA
Huntley RP, Harris MA, Alam-Faruque Y, Blake JA, Carbon S, Dietze H, Dimmer EC, Foulger RE, Hill DP, Khodiyar VK, Lock A, Lomax J, Lovering RC, Mutowo-Meullenet P, Sawford T, Van Auken K, Wood V, Mungall CJ (2014) A method for increasing expressivity of gene ontology annotations using a compositional approach. BMC Bioinform 15(1):155
Ideker T, Nussinov R (2017) Network approaches and applications in biology. PLOS Comput Biol 13(10):1–3
Ikeda T, Imai H (1999) Enhanced A* algorithms for multiple alignments: optimal alignments for several sequences and k-opt approximate alignments for large cases. Theor Comput Sci 210(2):341–374
Inokuchi A, Washio T, Motoda H (2000) An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed DA, Komorowski J, Żytkow J (eds) Principles of data mining and knowledge discovery. Springer, Berlin, pp 13–23
Inoue K (2011) Logic programming for Boolean networks. In: Proceedings of the twenty-second international joint conference on artificial intelligence - volume volume two, IJCAI’11. AAAI Press, pp 924–930
Inza I, Calvo B, Armañanzas R, Bengoetxea E, Larrañaga P, Lozano JA (2010) Machine learning: an indispensable tool in bioinformatics. Humana Press, Totowa, pp 25–48
Islamaj Doğan R, Kim S, Chatr-aryamontri A, Chang CS, Oughtred R, Rust J, Wilbur WJ, Comeau DC, Dolinski K, Tyers M (2017) The bioc-biogrid corpus: full text articles annotated for curation of protein-protein and genetic interactions. Database 2017(1):baw147
Jiang S-Y, Ramachandran S (2010) Assigning biological functions to rice genes by genome annotation, expression analysis and mutagenesis. Biotechnol Lett 32(12):1753–1763
Jones DT, Singh T, Kosciolek T, Tetchner S (2015) Metapsicov: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics 31(7):999–1006
Jong K, Marchiori E, Sebag M, Van Der Vaart A (2004) Feature selection in proteomic pattern data with support vector machines. In: Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology, 2004, CIBCB’04. IEEE, pp 41–48
Judson PN (2014) Knowledge-based approaches for predicting the sites and products of metabolism, chapter 12. Wiley-Blackwell, pp 293–318
Jupp S, Malone J, Bolleman J, Brandizi M, Davies M, Garcia L, Gaulton A, Gehant S, Laibe C, Redaschi N, Wimalaratne SM, Martin M, Le Novère N, Parkinson H, Birney E, Jenkinson AM (2014) The EBI RDF platform: linked open data for the life sciences. Bioinformatics 30(9):1338–1339
Källberg M, Wang H, Wang S, Peng J, Wang Z, Lu H, Xu J (2012) Template-based protein structure modeling using the RaptorX web server. Nat Protoc 7(8):1511–1522
Kaminski R, Schaub T, Siegel A, Videla S (2013) Minimal intervention strategies in logical signaling networks with ASP. Theory Pract Log Program 13(4–5):675–690
Kanehisa M (2017) Kegg glycan. In: A practical guide to using glycomics databases. Springer, Berlin, pp 177–193
Karpe PD, Latendresse M, Caspi R (2011) The pathway tools pathway prediction algorithm. Stand Genomic Sci 5(3):424
Kavanagh J, Mitchell D, Ternovska E, Maňuch J, Zhao X, Gupta A (2006) Constructing Camin-Sokal phylogenies via answer set programming. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 452–466
Keedwell E, Narayanan A (2005) Intelligent bioinformatics: the application of artificial intelligence techniques to bioinformatics problems. Wiley, New York
Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLOS Comput Biol 8(2):1–10
Kislyuk A, Lomsadze A, Lapidus AL, Borodovsky M (2009) Frameshift detection in prokaryotic genomic sequences. Int J Bioinform Res Appl 5(4):458–477
Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3(11):935
Klamt S (2006) Generalized concept of minimal cut sets in biochemical networks. Biosystems 83(2–3):233–247
Klarner H, Bockmayr A, Siebert H (2015) Computing maximal and minimal trap spaces of Boolean networks. Nat Comput 14(4):535–544
Klarner H, Streck A, Siebert H (2017) Pyboolnet: a python package for the generation, analysis and visualization of Boolean networks. Bioinformatics 33(5):770–772
Koliński A et al (2004) Protein modeling and structure prediction with a reduced representation. Acta Biochim Pol 51
Koponen L, Oikarinen E, Janhunen T, Säilä L (2015) Optimizing phylogenetic supertrees using answer set programming. Theory Pract Log Program 15(4–5):604–619
Korf RE, Zhang W, Thayer I, Hohwald H (2005) Frontier search. J ACM 52(5):715–748
Korostensky C, Gonnet G (1999) Near optimal multiple sequence alignments using a traveling salesman problem approach. In: SPIRE/CRIWG, pp 105–114
Koshino M, Murata H, Shirayama M, Kimura H (2006) Applying the various optimal solution search methods to multiple sequence alignments and performance evaluation. Syst Comput Jpn 37(11):1–10
Kowalski R (1979) Algorithm \(=\) logic \(+\) control. Commun ACM 22(7):424–436
Kumozaki S, Sato K, Sakakibara Y (2015) A machine learning based approach to de novo sequencing of glycans from tandem mass spectrometry spectrum. IEEE/ACM Trans Comput Biol Bioinform 12(6):1267–1274
Lacroix V, Sammeth M, Guigo R, Bergeron A (2008) Exact transcriptome reconstruction from short sequence reads. In: International workshop on algorithms in bioinformatics. Springer, pp 50–63
Lai J, An J, Seim I, Walpole C, Hoffman A, Moya L, Srinivasan S, Perry-Keene JL, Wang C, Lehman ML et al (2015) Fusion transcript loci share many genomic features with non-fusion loci. BMC Genomics 16(1):1021
Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20(3):318–331
Le Novere N (2015) Quantitative and logic modelling of gene and molecular networks. Nature Rev Genet 16(3):146
Le T, Nguyen H, Pontelli E, Son TC (2012) ASP at work: an ASP implementation of PhyloWS. In: Dovier A, Costa VS (eds) Technical communications of the 28th international conference on logic programming (ICLP’12), volume 17 of Leibniz international proceedings in informatics (LIPIcs), pp 359–369, Dagstuhl. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Germany
Lepailleur A, Poezevara G, Bureau R (2013) Automated detection of structural alerts (chemical fragments) in (eco)toxicology. Comput Struct Biotechnol J 5(6):e201302013
Lertampaiporn S, Thammarongtham C, Nukoolkit C, Kaewkamnerdpong B, Ruengjitchatchawalya M (2014) Identification of non-coding RNAs with a new composite feature in the hybrid random forest ensemble algorithm. Nucleic Acids Res 42(11):e93
Li L, Zhang Y, Zou L, Li C, Yu B, Zheng X, Zhou Y (2012) An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity. PLOS One 7(1):1–12
Li F, Li C, Wang M, Webb GI, Zhang Y, Whisstock JC, Song J (2015) Glycomine: a machine learning-based approach for predicting n-, c-and o-linked glycosylation in the human proteome. Bioinformatics 31(9):1411–1419
Li H, Hou J, Adhikari B, Lyu Q, Cheng J (2017) Deep learning methods for protein torsion angle prediction. BMC Bioinform 18(1):417
Lihu A, Holban Ş (2015) A review of ensemble methods for de novo motif discovery in ChIP-Seq data. Brief Bioinform 16(6):964–973
Lim CY, Wang H, Woodhouse S, Piterman N, Wernisch L, Fisher J, Göttgens B (2016) BTR: training asynchronous Boolean models using single-cell expression data. BMC Bioinform 17(1):355
Lindsay RK, Buchanan BG, Feigenbaum EA, Lederberg J (1993) Dendral: a case study of the first expert system for scientific hypothesis formation. Artif Intell 61(2):209–261
Liu H, Liu L, Zhang H (2010) Ensemble gene selection for cancer classification. Pattern Recognit 43(8):2763–2772
Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33(20):6494–6506
Lomsadze A, Burns PD, Borodovsky M (2014) Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res 42(15):e119
Magnan CN, Baldi P (2014) SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30(18):2592–2597
Mahadevan R, von Kamp A, Klamt S (2015) Genome-scale strain designs based on regulatory minimal cut sets. Bioinformatics 31(17):2844–2851
Mahé P, Vert J-P (2009) Graph kernels based on tree patterns for molecules. Mach Learn 75(1):3–35
Malikic S, McPherson AW, Donmez N, Sahinalp CS (2015) Clonality inference in multiple tumor samples using phylogeny. Bioinformatics 31(9):1349–1356
Mamitsuka H (2011) Glycoinformatics: data mining-based approaches. CHIMIA Int J Chem 65(1):10–13
Mann M, Backofen R (2014) Exact methods for lattice protein models. Bio-Algorithms Med-Syst 10(4):213–225
Mann M, Will S, Backofen R (2008) CPSP-tools – Exact and complete algorithms for high-throughput 3D lattice protein studies. BMC Bioinformatcis 9(1):230
Martin M, Dague P, Pérès S, Simon L (2016) Minimality of metabolic flux modes under Boolean regulation constraints. In: 12th International workshop on constraint-based methods for bioinformatics WCB’16, Toulouse, France
Matentzoglu N, Vigo M, Jay C, Stevens R (2017) Inference inspector: improving the verification of ontology authoring actions. Web semantics: science services and agents on the World Wide Web
Maupetit J, Gautier R, Tufféry P (2006) SABBAC: online structural alphabet-based protein backbone reconstruction from alpha-carbon trace. Nucleic Acids Res 34(suppl\({\_}\)2):W147–W151
McGuffin LJ, Bryson K, Jones DT (2000) The psipred protein structure prediction server. Bioinformatics 16(4):404–405
Medina and Tárraga, J., Martínez, H., Barrachina, S., Castillo, M. I., Paschall, J., Salavert-Torres, J., Blanquer-Espert, I., Hernández-García, V., Quintana-Ortí, E. S., and Dopazo, J (2016) Highly sensitive and ultrafast read mapping for RNA-seq analysis. DNA Res 23(2):93–100
Mei S (2012) Multi-label Multi-Kernel Transfer Learning for Human Protein Subcellular Localization. PLOS ONE 7(6):1–12
Mei S, Zhu H (2014) AdaBoost based multi-instance transfer learning for predicting proteome-wide interactions between salmonella and human proteins. PLOS ONE 9(10):1–12
Merelli E, Armano G, Cannata N, Corradini F, d’Inverno M, Doms A, Lord P, Martin A, Milanesi L, Möller S, Schroeder M, Luck M (2007) Agents in bioinformatics, computational and systems biology. Brief Bioinform 8(1):45
Mestres J, Gregori-Puigjane E, Valverde S, Sole RV (2008) Data completeness-the Achilles heel of drug-target networks. Nature Biotechnol 26(9):983
MGlincy NJ, Ingolia NT (2017) Transcriptome-wide measurement of translation by ribosome profiling. Methods 126:112–129. Post-transcriptional regulation of gene expression
Michel AM, Choudhury KR, Firth AE, Ingolia NT, Atkins JF, Baranov PV (2012) Observation of dually decoded regions of the human genome using ribosome profiling data. Genome Res 22(11):2219–2229
Midic U, Dunker AK, Obradovic Z (2005) Improving protein secondary-structure prediction by predicting ends of secondary-structure segments. In: Proceedings of the 2005 IEEE symposium on computational intelligence in bioinformatics and computational biology, CIBCB’05. IEEE, pp 1–8
Miranda M, Lynce I, Manquinho V (2014) Inferring phylogenetic trees using pseudo-Boolean optimization. AI Commun 27(3):229–243
Mitra S, Datta S, Perkins T, Michailidis G (2008) Introduction to machine learning and bioinformatics. CRC Press, Boca Raton
Miyahara T, Kuboyama T (2014) Learning of glycan motifs using genetic programming and various fitness functions. J Adv Comput Intell Intell Inform 18(3):401–408
Moll M, Schwarz D, Kavraki LE (2008) Roadmap methods for protein folding. Protein Struct Predict 219–239
Monteiro PT, Ropers D, Mateescu R, Freitas AT, de Jong H (2008) Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics 24(16):i227–i233
Moult J, Fidelis K, Kryshtafovych A, Schwede T, Tramontano A (2018) Critical assessment of methods of protein structure prediction (CASP)—round xii. Proteins: Struct Funct Bioinform 86:7–15
Muggleton S, King RD, Stenberg MJ (1992) Protein secondary structure prediction using logic-based machine learning. Protein Eng Des Sel 5(7):647–657
Muller J, Creevey CJ, Thompson JD, Arendt D, Bork P (2010) Aqua: automated quality improvement for multiple sequence alignments. Bioinformatics 26(2):263–265
Mungall CJ, Torniai C, Gkoutos GV, Lewis SE, Haendel MA (2012) Uberon, an integrative multi-species anatomy ontology. Genome Biology 13(1):R5
Mushthofa M, Torres G, Van de Peer Y, Marchal K, De Cock M (2014) ASP-G: an ASP-based method for finding attractors in genetic regulatory networks. Bioinformatics 30(21):3086–3092
Nagi S, Bhattacharyya DK, Kalita JK (2017) Complex detection from ppi data using ensemble method. Netw Model Anal Health Inform Bioinform 6(1):3
Naik AW, Kangas JD, Sullivan DP, Murphy RF (2016) Active machine learning-driven experimentation to determine compound effects on protein patterns. eLife 5:e10047
Naldi A, Carneiro J, Chaouiya C, Thieffry D (2010) Diversity and plasticity of th cell types predicted from regulatory network modelling. PLOS Comput Biology 6(9):1–16
Nesbeth DN, Zaikin A, Saka Y, Romano MC, Giuraniuc CV, Kanakov O, Laptyeva T (2016) Synthetic biology routes to bio-artificial intelligence. Essays Biochem 60(4):381–391
Newman A, Ruhl M (2004) Combinatorial problems on strings with applications to protein folding. In: Farach-Colton M (ed) LATIN 2004: theoretical informatics. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 369–378
Ng C-T, Li C, Fan X (2017) A fast algorithm for reconstructing multiple sequence alignment and phylogeny simultaneously. Current Bioinform 12:329–348
Offmann B, Tyagi M, de Brevern AG (2007) Local protein structures. Current Bioinform 2(3):165–202
Okun O, Priisalu H (2007) Random forest for gene expression based cancer classification: overlooked issues. Pattern Recognit Image Anal 483–490
Omar M, Salam R, Abdullah R, Rashid N (2005) Multiple sequence alignment using optimization algorithms. Int J Comput Intell 1(2):81–89
Pandini A, Fornili A, Kleinjung J (2010) Structural alphabets derived from attractors in conformational space. BMC Bioinform 11(1):97
Park YR, Kim J, Lee HW, Yoon YJ, Kim JH (2011) Gochase-ii: correcting semantic inconsistencies from gene ontology-based annotations for gene products. BMC Bioinform 12(1):S40
Pashaei E, Ozen M, Aydin N (2017) Splice site identification in human genome using random forest. Health Technol 7(1):141–152
Pashaei E, Aydin N (2017) Frequency difference based DNA encoding methods in human splice site recognition. In: 2017 international conference on computer science and engineering (UBMK). IEEE, pp 586–591
Pashaei E, Ozen M, Aydin N (2016a) Splice sites prediction of human genome using adaboost. In: 2016 IEEE-EMBS international conference on biomedical and health informatics (BHI). IEEE, pp 300–303
Pashaei E, Yilmaz A, Aydin N (2016b) A combined SVM and Markov model approach for splice site identification. In: 2016 6th international conference on computer and knowledge engineering (ICCKE). IEEE, pp 200–204
Peng J, Xu J (2010) Low-homology protein threading. Bioinformatics 26(12):i294–i300
Pérez S, Sarkar A, Rivet A, Breton C, Imberty A (2015) Glyco3d: a portal for structural glycosciences. In: Glycoinformatics. Springer, pp 241–258
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) Stringtie enables improved reconstruction of a transcriptome from rna-seq reads. Nat Biotechnol 33(3):290–295
Pes B, Dessì N, Angioni M (2017) Exploiting the ensemble paradigm for stable feature selection: a case study on high-dimensional genomic data. Inf Fus 35(Supplement:C):132–147
Petegrosso R, Park S, Hwang TH, Kuang R (2017) Transfer learning across ontologies for phenome-genome association prediction. Bioinformatics 33(4):529–536
Piao Y, Piao M, Park K, Ryu KH (2012) An ensemble correlation-based gene selection algorithm for cancer classification with gene expression data. Bioinformatics 28(24):3306–3315
Pietal MJ, Bujnicki JM, Kozlowski LP (2015) GDFuzz3D: a method for protein 3D structure reconstruction from contact maps, based on a non-euclidean distance function. Bioinformatics 31(21):3499–3505
Pirola Y, Rizzi R, Picardi E, Pesole G, Della Vedova G, Bonizzoni P (2012) Pintron: a fast method for detecting the gene structure due to alternative splicing via maximal pairings of a pattern and a text. BMC Bioinform 13(5):S2
Pokarowski P, Kolinski A, Skolnick J (2003) A minimal physically realistic protein-like lattice model: designing an energy landscape that ensures all-or-none folding to a unique native state. Biophys J 84(3):1518–1526
Popic V, Salari R, Hajirasouliha I, Kashef-Haghighi D, West RB, Batzoglou S (2015) Fast and scalable inference of multi-sample cancer lineages. Genome Biology 16(1):91
Post LJG, Roos M, Marshall MS, van Driel R, Breit TM (2007) A semantic web approach applied to integrative bioinformatics experimentation: a biological use case with genomics data. Bioinformatics 23(22):3080–3087
Raies AB, Bajic VB (2016) In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev: Comput Mol Sci 6(2):147–172
Ramsden JJ (2004) Bioinformatics: an introduction, Volume 21 of Computational biology. Springer
Rannug U, Sjögren M, Rannug A, Gillner M, Toftgård R, Gustafsson J-Å, Rosenkranz H, Klopman G (1991) Use of artificial intelligence in structure-affinity correlations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) receptor ligands. Carcinogenesis 12(11):2007–2015
Ranzinger R, Aoki-Kinoshita KF, Campbell MP, Kawano S, Lütteke T, Okuda S, Shinmachi D, Shikanai T, Sawaki H, Toukach P, Matsubara M, Yamada I, Narimatsu H (2015) GlycoRDF: an ontology to standardize glycomics data in RDF. Bioinformatics 31(6):919–925
Reid I, O’Toole N, Zabaneh O, Nourzadeh R, Dahdouli M, Abdellateef M, Gordon PM, Soh J, Butler G, Sensen CW, Tsang A (2014) Snowyowl: accurate prediction of fungal genes by using RNA-seq and homology information to select among ab initio models. BMC Bioinform 15(1):229
Reker D, Schneider P, Schneider G (2016) Multi-objective active machine learning rapidly improves structure-activity models and reveals new protein-protein interaction inhibitors. Chem Sci 7:3919–3927
Reker D, Schneider P, Schneider G, Brown J (2017) Active learning for computational chemogenomics. Futur Med Chem 9(4):381–402
Requeno JI, Colom JM (2016) Evaluation of properties over phylogenetic trees using stochastic logics. BMC Bioinform 17(1):235
Requeno JI, de Miguel Casado G, Blanco R, Colom JM (2013) Temporal logics for phylogenetic analysis via model checking. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 10(4):1058–1070
Rinaldi F, Lithgow O, Gama-Castro S, Solano H, López-Fuentes A, Muñiz Rascado LJ, Ishida-Gutiérrez C, Méndez-Cruz C-F, Collado-Vides J (2017) Strategies towards digital and semi-automated curation in RegulonDB. Database 2017:bax012
Robertson MP, Joyce GF (2012) The origins of the RNA world. Cold Spring Harb Perspect Biol 4(5):a003608
Rodríguez-Penagos C, Salgado H, Martínez-Flores I, Collado-Vides J (2007) Automatic reconstruction of a bacterial regulatory network using natural language processing. BMC Bioinform 8(1):293
Röhl A, Bockmayr A (2017) A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks. BMC Bioinform 18(1):2
Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232(2):584–599
Sakiyama Y, Yuki H, Moriya T, Hattori K, Suzuki M, Shimada K, Honma T (2008) Predicting human liver microsomal stability with machine learning techniques. J Mol Graph Model 26(6):907–915
Samaga R, Kamp AV, Klamt S (2010) Computing combinatorial intervention strategies and failure modes in signaling networks. J Comput Biol 17(1):39–53
Sarkar IN (2015) Mining the bibliome. In: Translational informatics. Springer, pp 75–96
Sawada R, Kotera M, Yamanishi Y (2014) Benchmarking a wide range of chemical descriptors for drug-target interaction prediction using a chemogenomic approach. Mol Inform 33(11–12):719–731
Schietgat L, Vens C, Struyf J, Blockeel H, Kocev D, Džeroski S (2010) Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinform 11(1):2
Schroedl S (2005) An improved search algorithm for optimal multiple-sequence alignment. J Artif Intell Res 23:587–623
Schulte C, Stuckey PJ (2008) Efficient constraint propagation engines. Trans Program Lang Syst 31(1):2:1–2:43
Schwartz R, Schäffer AA (2017) The evolution of tumour phylogenetics: principles and practice. Nat Rev Genet 18(4):213
Senger RS, Karim MN (2008) Prediction of n-linked glycan branching patterns using artificial neural networks. Math Biosci 211(1):89–104
Shao Z, Hirayama Y, Yamanishi Y, Saigo H (2015) Mining discriminative patterns from graph data with multiple labels and its application to quantitative structure-activity relationship (qsar) models. J Chem Inf Model 55(12):2519–2527 PMID: 26549421
Shatabda S, Newton MAH, Sattar A (2014)Constraint-based evolutionary local search for protein structures with secondary motifs. In: Pham D-N, Park S-B (eds) PRICAI 2014: trends in artificial intelligence. Springer International Publishing, pp 333–344
Shaw DL, Islam AS, Rahman MS, Hasan M (2014) Protein folding in HP model on hexagonal lattices with diagonals. BMC Bioinform 15(2):S7
Sheela T, Rangarajan L (2017) Combination of feature selection methods for the effective classification of microarray gene expression data. In: Santosh K, Hangarge M, Bevilacqua V, Negi A (eds) Recent trends in image processing and pattern recognition: first international conference, RTIP2R 2016, Bidar, India, 16–17 Dec 2016, Revised Selected Papers. Springer, Singapore, pp 137–145
Sherhod R, Judson PN, Hanser T, Vessey JD, Webb SJ, Gillet VJ (2014) Emerging pattern mining to aid toxicological knowledge discovery. J Chem Inf Model 54(7):1864–1879
Shvaiko P, Euzenat J (2013) Ontology matching: state of the art and future challenges. IEEE Trans Knowl Data Eng 25(1):158–176
Singh GB (2015) Introduction to bioinformatics. In: Fundamentals of bioinformatics and computational biology. Springer, pp 3–10
Singh H, Singh S, Raghava GPS (2014) Evaluation of protein dihedral angle prediction methods. PLOS ONE 9(8):1–9
Skwark MJ, Raimondi D, Michel M, Elofsson A (2014) Improved contact predictions using the recognition of protein like contact patterns. PLOS Comput Biology 10(11):1–14
Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ et al (2007) The obo foundry: coordinated evolution of ontologies to support biomedical data integration. Nature Biotechnol 25(11):1251–1255
Smitha SKN, Reddy SN (2016) Amyloid motif prediction using ensemble approach. Current Bioinform 11(3):357–365
Song J, Burrage K, Yuan Z, Huber T (2006) Prediction of cis/trans isomerization in proteins using psi-blast profiles and secondary structure information. BMC Bioinform 7(1):124
Soon WW, Hariharan M, Snyder MP (2013) High-throughput sequencing for biology and medicine. Mol Syst Biology 9(1):640
Spencer M, Eickholt J, Cheng J (2015) A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinform 12(1):103–112
Sridhar S, Lam F, Blelloch GE, Ravi R, Schwartz R (2008) Mixed integer linear programming for maximum-parsimony phylogeny inference. IEEE/ACM Trans Comput Biol Bioinform 5(3):323–331
Sternberg MJ, Tamaddoni-Nezhad A, Lesk VI, Kay E, Hitchen PG, Cootes A, van Alphen LB, Lamoureux MP, Jarrell HC, Rawlings CJ, Soo EC, Szymanski CM, Dell A, Wren BW, Muggleton SH (2013) Gene function hypotheses for the campylobacter jejuni glycome generated by a logic-basedApproach. J Mol Biol 425(1):186–197
Stevens R, Goble CA, Bechhofer S (2000) Ontology-based knowledge representation for bioinformatics. Brief Bioinform 1(4):398–414
Sundfeld D, Razzolini C, Teodoro G, Boukerche A, de Melo ACMA (2017) Pa-star: a disk-assisted parallel a-star strategy with locality-sensitive hash for multiple sequence alignment. J Parallel Distrib Comput
Takigawa I, Mamitsuka H (2013) Graph mining: procedure, application to drug discovery and recent advances. Drug Discov Today 18(1):50–57
Takigawa I, Hashimoto K, Shiga M, Kanehisa M, Mamitsuka H (2010) Mining patterns from glycan structures, pp 13–24
The GO Consortium (2017) Expansion of the gene ontology knowledgebase and resources. Nucl Acids Res 45(D1):D331–D338
Tiemeyer M, Aoki K, Paulson J, Cummings RD, York WS, Karlsson NG, Lisacek F, Packer NH, Campbell MP, Aoki NP et al (2017) GlyTouCan: an accessible glycan structure repository. Glycobiology 27(10):915–919
Traoré S, Roberts KE, Allouche D, Donald BR, André I, Schiex T, Barbe S (2016) Fast search algorithms for computational protein design. J Comput Chem 37(12):1048–1058
Traynard P, Fauré A, Fages F, Thieffry D (2016) Logical model specification aided by model-checking techniques: application to the mammalian cell cycle regulation. Bioinformatics 32(17):i772–i780
Ueda N, Aoki-Kinoshita KF, Yamaguchi A, Akutsu T, Mamitsuka H (2005) A probabilistic model for mining labeled ordered trees: capturing patterns in carbohydrate sugar chains. IEEE Trans Knowl Data Eng 17(8):1051–1064
Ugarte W, Boizumault P, Crémilleux B, Lepailleur A, Loudni S, Plantevit M, Raïssi C, Soulet A (2017) Skypattern mining: from pattern condensed representations to dynamic constraint satisfaction problems. Artificial Intell 244:48–69. Combining constraint solving with mining and learning
Vendruscolo M, Kussell E, Domany E (1997) Recovery of protein structure from contact maps. Fold Des 2(5):295–306
Verfaillie G, Jussien N (2005) Constraint solving in uncertain and dynamic environments: A survey. Constraints 10(3):253–281
Vert J-P, Jacob L (2008) Machine learning for in silico virtual screening and chemical genomics: new strategies. Comb Chem High Throughput Screen 11(8):677–685
Videla S, Saez-Rodriguez J, Guziolowski C, Siegel A (2017) caspo: a toolbox for automated reasoning on the response of logical signaling networks families. Bioinformatics 33(6):947–950
Videla S, Guziolowski C, Eduati F, Thiele S, Gebser M, Nicolas J, Saez-Rodriguez J, Schaub T, Siegel A (2015) Learning Boolean logic models of signaling networks with ASP. Theor Comput Sci 599(Supplement C):79 – 101. Advances in computational methods in systems biology
von Kamp A, Klamt S (2014) Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput Biology 10(1):e1003378
Wald R, Khoshgoftaar TM, Dittman D, Awada W, Napolitano A (2012) An extensive comparison of feature ranking aggregation techniques in bioinformatics. In: 2012 IEEE 13th international conference on information reuse and integration (IRI). IEEE, pp 377–384
Walker SI, Davies PC (2013) The algorithmic origins of life. J R Soc Interface 10(79):20120869
Wan S, Mak M-W, Kung S-Y (2014) HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins. PLOS ONE 9(3):1–12
Wang Z, Xu J (2013) Predicting protein contact map using evolutionary and physical constraints by integer programming. Bioinformatics 29(13):i266–i273
Wang X, Xuan Z, Zhao X, Li Y, Zhang MQ (2009) High-resolution human core-promoter prediction with CoreBoost\_HM. Genome Res 19(2):266–275
Wang S, Li W, Liu S, Xu J (2016a) RaptorX-Property: a web server for protein structure property prediction. Nucl Acids Res 44(W1):W430–W435
Wang S, Li W, Zhang R, Liu S, Xu J (2016b) CoinFold: a web server for protein contact prediction and contact-assisted protein folding. Nucl Acids Res 44(W1):W361–W366
Wang S, Sun S, Li Z, Zhang R, Xu J (2017a) Accurate de novo prediction of protein contact map by ultra-deep learning model. PLOS Comput Biology 13(1):1–34
Wang Y, Mao H, Yi Z (2017b) Protein secondary structure prediction by using deep learning method. Knowl Based Syst 118:115–123
Wang S, Peng J, Ma J, Xu J (2016c) Protein secondary structure prediction using deep convolutional neural fields. Scientific Rep 6(18962)
Wei D, Zhang H, Wei Y, Jiang Q (2013) A novel splice site prediction method using support vector machine. J Comput Inf Syst 9(20):8053–8060
Wei K, Iyer R, Bilmes J (2015) Submodularity in data subset selection and active learning. In: Bach F, Blei D (eds) Proceedings of the 32nd international conference on machine learning, volume 37 of Proceedings of machine learning research, Lille, France, PMLR, pp 1954–1963
Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T, Musen MA (2011) Bioportal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucleic Acids Res 39(suppl\(_2\)):W541–W545
Wu B, Abbott T, Fishman D, McMurray W, Mor G, Stone K, Ward D, Williams K, Zhao H (2003) Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data. Bioinformatics 19(13):1636–1643
Wu G, You J-H, Lin G (2007) Quartet-based phylogeny reconstruction with answer set programming. IEEE/ACM Trans Comput Biol Bioinform 4(1)
Wuyun Q, Zheng W, Peng Z, Yang J (2016) A large-scale comparative assessment of methods for residue–residue contact prediction. Brief Bioinform bbw106
Xia J-F, Wu M, You Z-H, Zhao X-M, Li X-L (2010) Prediction of \(\beta \)-hairpins in proteins using physicochemical properties and structure information. Protein Pept Lett 17(9):1123–1128
Xiao Y, Dougherty ER (2007) The impact of function perturbations in Boolean networks. Bioinformatics 23(10):1265–1273
Xue LC, Rodrigues JP, Dobbs D, Honavar V, Bonvin AM (2017) Template-based protein-protein docking exploiting pairwise interfacial residue restraints. Brief Bioinform 18(3):458–466
Yamanishi Y, Bach F, Vert J-P (2007) Glycan classification with tree kernels. Bioinformatics 23(10):1211–1216
Yanev N, Traykov M, Milanov P, Yurukov B (2017) Protein folding prediction in a cubic lattice in hydrophobic-polar model. J Comput Biology 24(5):412–421
Yang P, Ho JW, Yang YH, Zhou BB (2011) Gene-gene interaction filtering with ensemble of filters. BMC Bioinform 12(1):S10
Yang P, Humphrey SJ, James DE, Yang YH, Jothi R (2016a) Positive-unlabeled ensemble learning for kinase substrate prediction from dynamic phosphoproteomics data. Bioinformatics 32(2):252–259
Yang Y, Gao J, Wang J, Heffernan R, Hanson J, Paliwal K, Zhou Y (2016b). Sixty-five years of the long march in protein secondary structure prediction: the final stretch? Brief Bioinform bbw129
Yang P, Hwa Yang JY, Zhou BB, Zomaya AY (2010) A review of ensemble methods in bioinformatics. Current Bioinform 5(4):296–308
Yoshizumi T, Miura T, Ishida T (2000) A* with partial expansion for large branching factor problems. In: AAAI/IAAI, pp 923–929
Yuan G-C, Cai L, Elowitz M, Enver T, Fan G, Guo G, Irizarry R, Kharchenko P, Kim J, Orkin S, Quackenbush J, Saadatpour A, Schroeder T, Shivdasani R, Tirosh I (2017) Challenges and emerging directions in single-cell analysis. Genome Biol 18(1):84
Zhang Y, Rajapakse JC (2009) Machine learning in bioinformatics, vol 4. Wiley, New York
Zhang T, Faraggi E, Li Z, Zhou Y (2013) Intrinsically semi-disordered state and its role in induced folding and protein aggregation. Cell Biochem Biophys 67(3):1193–1205
Zhao Y, Hayashida M, Akutsu T (2010) Integer programming-based method for grammar-based tree compression and its application to pattern extraction of glycan tree structures. BMC Bioinform 11(11):S4
Zhao Y, Hayashida M, Cao Y, Hwang J, Akutsu T (2015) Grammar-based compression approach to extraction of common rules among multiple trees of glycans and rnas. BMC Bioinform 16(1):128
Zhou R, Hansen EA (2004) Space-efficient memory-based heuristics. In: AAAI, pp 677–682
Acknowledgements
I would like to thank authors of the French version of this chapter who offered me a primary material of quality to start this English version: F. Coste, C. Nédellec, Th. Schiex and J.-P. Vert. Thanks also to O. Dameron and F. Coste for their proofreading of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Nicolas, J. (2020). Artificial Intelligence and Bioinformatics. In: Marquis, P., Papini, O., Prade, H. (eds) A Guided Tour of Artificial Intelligence Research. Springer, Cham. https://doi.org/10.1007/978-3-030-06170-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-06170-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-06169-2
Online ISBN: 978-3-030-06170-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)