Abstract
In this paper we tackle the problem of regularisation for inverse problems in single shell diffusion weighted image restoration. Our aim is to recover a high-resolution and denoised DWI signal, prior to any model fitting. The main contribution of our method is the combination of two regularization terms, one using the information arising from the spatial domain, hence analysing the single image, while the other uses information coming from the angular domain, thus using the relationships between the values along different directions within a single voxel. We show that our novel regularization method outperforms widely used and recent DWI denoising algorithms. Additionally we demonstrate that the proposed regularisation technique can be successfully applied to the super-resolution reconstruction of high-resolution volume from thick-slice data. Both scenarios are tested on simulated phantom and real DWI data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aura Rasclosa, A.: Sparse inverse problems for Fourier imaging applications to Optical Interferometry and Diffusion Magnetic Resonance Imaging. Ph.D. thesis, Lausanne (2017)
Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)
Chen, Y., Dai, Y.H., Han, D.: Fiber orientation distribution estimation using a Peaceman-Rachford splitting method. SIAM J. Imag. Sci. 9(2), 573–604 (2016)
Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images. IEEE Trans. Med. Imag. 27(4), 425–441 (2008)
Coupé, P., Manjón, J.V., Chamberland, M., Descoteaux, M., Hiba, B.: Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage 83, 245–261 (2013)
Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Mag. Res. Med. 58(3), 497–510 (2007)
Diffusion Imaging in PYthon (DIPY). http://nipy.org/dipy/
HARDI Reconstruction Challenge, ISBI 2013. http://hardi.epfl.ch/static/events/2013_ISBI/
Jiang, S., Xue, H., Glover, A., Rutherford, M., Rueckert, D., Hajnal, J.V.: MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. IEEE Trans. Med. Imag. 26(7), 967–980 (2007)
Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)
Liu, R.W., Shi, L., Huang, W., Xu, J., Yu, S.C.H., Wang, D.: Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. Magn. Reson. Imag. 32(6), 702–720 (2014)
MRtrix. http://www.mrtrix.org/
Ouyang, Y., Chen, Y., Wu, Y., Zhou, H.: Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inv. Prob. Imag. 7, 565–583 (2013)
Scherrer, B., Gholipour, A., Warfield, S.: Super-resolution in diffusion-weighted imaging. In: MICCAI 2011, pp. 124–132 (2011)
Scherrer, B., Gholipour, A., Warfield, S.K.: Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions. Med. Image Anal. 16(7), 1465–1476 (2012)
Tobisch, A., Neher, P.F., Rowe, M.C., Maier-Hein, K.H., Zhang, H.: Model-based super-resolution of diffusion MRI. In: Computational Diffusion MRI and Brain Connectivity, pp. 25–34. Springer, Cham (2014)
Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)
Tourbier, S., Bresson, X., Hagmann, P., Thiran, J.P., Meuli, R., Cuadra, M.B.: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. NeuroImage 118, 584–597 (2015)
Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Veraart, J., Fieremans, E., Novikov, D.S.: Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. (2016)
Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E.: Denoising of diffusion MRI using random matrix theory. NeuroImage 142, 394–406 (2016)
Acknowledgements
This work was supported by the CIBM of the Unil, the Swiss Federal Institute of Technology Lausanne, the University of Geneva, the CHUV, the Hôpitaux Universitaires de Genève, the Leenaards and Jeantet Foundations. This work was also supported by the Swiss National Science Foundation grant SNSF-IZK0Z2_170894.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Mella, A., Daducci, A., Orlandi, G., Thiran, JP., Deprez, M., Bach Cuadra, M. (2019). A Novel Spatial-Angular Domain Regularisation Approach for Restoration of Diffusion MRI. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-05831-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05830-2
Online ISBN: 978-3-030-05831-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)