Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Novel Spatial-Angular Domain Regularisation Approach for Restoration of Diffusion MRI

  • Conference paper
  • First Online:
Computational Diffusion MRI (MICCAI 2019)

Abstract

In this paper we tackle the problem of regularisation for inverse problems in single shell diffusion weighted image restoration. Our aim is to recover a high-resolution and denoised DWI signal, prior to any model fitting. The main contribution of our method is the combination of two regularization terms, one using the information arising from the spatial domain, hence analysing the single image, while the other uses information coming from the angular domain, thus using the relationships between the values along different directions within a single voxel. We show that our novel regularization method outperforms widely used and recent DWI denoising algorithms. Additionally we demonstrate that the proposed regularisation technique can be successfully applied to the super-resolution reconstruction of high-resolution volume from thick-slice data. Both scenarios are tested on simulated phantom and real DWI data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aura Rasclosa, A.: Sparse inverse problems for Fourier imaging applications to Optical Interferometry and Diffusion Magnetic Resonance Imaging. Ph.D. thesis, Lausanne (2017)

    Google Scholar 

  2. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imag. Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Dai, Y.H., Han, D.: Fiber orientation distribution estimation using a Peaceman-Rachford splitting method. SIAM J. Imag. Sci. 9(2), 573–604 (2016)

    Article  MathSciNet  Google Scholar 

  4. Coupé, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C.: An optimized blockwise nonlocal means denoising filter for 3-d magnetic resonance images. IEEE Trans. Med. Imag. 27(4), 425–441 (2008)

    Article  Google Scholar 

  5. Coupé, P., Manjón, J.V., Chamberland, M., Descoteaux, M., Hiba, B.: Collaborative patch-based super-resolution for diffusion-weighted images. NeuroImage 83, 245–261 (2013)

    Article  Google Scholar 

  6. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical q-ball imaging. Mag. Res. Med. 58(3), 497–510 (2007)

    Article  Google Scholar 

  7. Diffusion Imaging in PYthon (DIPY). http://nipy.org/dipy/

  8. HARDI Reconstruction Challenge, ISBI 2013. http://hardi.epfl.ch/static/events/2013_ISBI/

  9. Jiang, S., Xue, H., Glover, A., Rutherford, M., Rueckert, D., Hajnal, J.V.: MRI of moving subjects using multislice snapshot images with volume reconstruction (SVR): application to fetal, neonatal, and adult brain studies. IEEE Trans. Med. Imag. 26(7), 967–980 (2007)

    Article  Google Scholar 

  10. Kuklisova-Murgasova, M., Quaghebeur, G., Rutherford, M.A., Hajnal, J.V., Schnabel, J.A.: Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med. Image Anal. 16(8), 1550–1564 (2012)

    Article  Google Scholar 

  11. Liu, R.W., Shi, L., Huang, W., Xu, J., Yu, S.C.H., Wang, D.: Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. Magn. Reson. Imag. 32(6), 702–720 (2014)

    Article  Google Scholar 

  12. MRtrix. http://www.mrtrix.org/

  13. Ouyang, Y., Chen, Y., Wu, Y., Zhou, H.: Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inv. Prob. Imag. 7, 565–583 (2013)

    Article  MathSciNet  Google Scholar 

  14. Scherrer, B., Gholipour, A., Warfield, S.: Super-resolution in diffusion-weighted imaging. In: MICCAI 2011, pp. 124–132 (2011)

    Google Scholar 

  15. Scherrer, B., Gholipour, A., Warfield, S.K.: Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions. Med. Image Anal. 16(7), 1465–1476 (2012)

    Article  Google Scholar 

  16. Tobisch, A., Neher, P.F., Rowe, M.C., Maier-Hein, K.H., Zhang, H.: Model-based super-resolution of diffusion MRI. In: Computational Diffusion MRI and Brain Connectivity, pp. 25–34. Springer, Cham (2014)

    Google Scholar 

  17. Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 23(3), 1176–1185 (2004)

    Article  Google Scholar 

  18. Tourbier, S., Bresson, X., Hagmann, P., Thiran, J.P., Meuli, R., Cuadra, M.B.: An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. NeuroImage 118, 584–597 (2015)

    Article  Google Scholar 

  19. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  20. Veraart, J., Fieremans, E., Novikov, D.S.: Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. (2016)

    Google Scholar 

  21. Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., Fieremans, E.: Denoising of diffusion MRI using random matrix theory. NeuroImage 142, 394–406 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the CIBM of the Unil, the Swiss Federal Institute of Technology Lausanne, the University of Geneva, the CHUV, the Hôpitaux Universitaires de Genève, the Leenaards and Jeantet Foundations. This work was also supported by the Swiss National Science Foundation grant SNSF-IZK0Z2_170894.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Mella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mella, A., Daducci, A., Orlandi, G., Thiran, JP., Deprez, M., Bach Cuadra, M. (2019). A Novel Spatial-Angular Domain Regularisation Approach for Restoration of Diffusion MRI. In: Bonet-Carne, E., Grussu, F., Ning, L., Sepehrband, F., Tax, C. (eds) Computational Diffusion MRI. MICCAI 2019. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-030-05831-9_4

Download citation

Publish with us

Policies and ethics