Abstract
People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baltrušaitis, T., et al.: Real-time inference of mental states from facial expressions and upper body gestures. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), pp. 909–914. IEEE (2011)
Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W.F., Weiss, B.: A database of German emotional speech. In: Ninth European Conference on Speech Communication and Technology (2005)
Camras, L.A., Oster, H., Campos, J.J., Miyake, K., Bradshaw, D.: Japanese and american infants’ responses to arm restraint. Dev. Psychol. 28(4), 578 (1992)
Daneshmand, M., et al.: 3D scanning: a comprehensive survey. arXiv preprint arXiv:1801.08863 (2018)
Douglas-Cowie, E., Cowie, R., Schröder, M.: A new emotion database: considerations, sources and scope. In: ISCA Tutorial and Research Workshop (ITRW) on Speech and Emotion (2000)
Efron, D.: Gesture and environment (1941)
Ekman, P.: Universal and cultural differences in facial expression of emotion. Nebr. Sym. Motiv. 19, 207–283 (1971)
Gavrilescu, M.: Recognizing emotions from videos by studying facial expressions, body postures and hand gestures. In: 2015 23rd Telecommunications Forum Telfor (TELFOR), pp. 720–723. IEEE (2015)
Gelder, B.D.: Why bodies? Twelve reasons for including bodily expressions in affective neuroscience. Philos. Trans. R. Soc. B: Biol. Sci. 364(364), 3475–3484 (2009)
Goswami, G., Vatsa, M., Singh, R.: RGB-D face recognition with texture and attribute features. IEEE Trans. Inf. Forensics Secur. 9(10), 1629–1640 (2014)
Greco, A., Valenza, G., Citi, L., Scilingo, E.P.: Arousal and valence recognition of affective sounds based on electrodermal activity. IEEE Sens. J. 17(3), 716–725 (2017)
Gupta, R., Khomami Abadi, M., Cárdenes Cabré, J.A., Morreale, F., Falk, T.H., Sebe, N.: A quality adaptive multimodal affect recognition system for user-centric multimedia indexing. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, pp. 317–320. ACM (2016)
Haamer, R.E., et al.: Changes in facial expression as biometric: a database and benchmarks of identification. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 621–628. IEEE (2018)
Haque, M.A., et al.: Deep multimodal pain recognition: a database and comparison of spatio-temporal visual modalities. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 250–257. IEEE (2018)
Hg, R., Jasek, P., Rofidal, C., Nasrollahi, K., Moeslund, T.B., Tranchet, G.: An RGB-D database using microsoft’s kinect for windows for face detection. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 42–46. IEEE (2012)
Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)
Jerritta, S., Murugappan, M., Wan, K., Yaacob, S.: Emotion recognition from facial EMG signals using higher order statistics and principal component analysis. J. Chin. Inst. Eng. 37(3), 385–394 (2014)
Kamińska, D., Sapiński, T., Anbarjafari, G.: Efficiency of chosen speech descriptors in relation to emotion recognition. EURASIP J. Audio Speech Music Process. 2017(1), 3 (2017)
Kendon, A.: The study of gesture: some remarks on its history. In: Deely, J.N., Lenhart, M.D. (eds.) Semiotics 1981, pp. 153–164. Springer, Heidelberg (1983). https://doi.org/10.1007/978-1-4615-9328-7_15
Kiforenko, L., Kraft, D.: Emotion recognition through body language using RGB-D sensor. Vision Theory and Applications Computer Vision Theory and Applications, pp. 398–405. SCITEPRESS Digital Library (2016) In: 11th International Conference on Computer Vision Theory and Applications Computer Vision Theory and Applications, pp. 398–405. SCITEPRESS Digital Library (2016)
Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61, 610–628 (2017)
Lüsi, I., Escarela, S., Anbarjafari, G.: SASE: RGB-depth database for human head pose estimation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 325–336. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_26
Min, R., Kose, N., Dugelay, J.L.: KinectFaceDB: a kinect database for face recognition. IEEE Trans. Syst. Man Cybern. Syst. 44(11), 1534–1548 (2014)
Noroozi, F., Corneanu, C.A., Kamińska, D., Sapiński, T., Escalera, S., Anbarjafari, G.: Survey on emotional body gesture recognition. arXiv preprint arXiv:1801.07481 (2018)
Noroozi, F., Sapiński, T., Kamińska, D., Anbarjafari, G.: Vocal-based emotion recognition using random forests and decision tree. Int. J. Speech Technol. 20(2), 239–246 (2017)
Pease, B., Pease, A.: The Definitive Book of Body Language. Bantam, New York City (2004)
Pławiak, P., Sośnicki, T., Niedźwiecki, M., Tabor, Z., Rzecki, K.: Hand body language gesture recognition based on signals from specialized glove and machine learning algorithms. IEEE Trans. Ind. Inform. 12(3), 1104–1113 (2016)
Plutchik, R.: The nature of emotions human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89(4), 344–350 (2001)
Psaltis, A., et al.: Multimodal affective state recognition in serious games applications. In: 2016 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 435–439. IEEE (2016)
Ranganathan, H., Chakraborty, S., Panchanathan, S.: Multimodal emotion recognition using deep learning architectures. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)
Russell, J., Mehrabian, A.: Evidence for a three-factor theory of emotions. J. Res. Pers. 11, 273–294 (1977)
Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., Akarun, L.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89991-4_6
Wan, J., et al.: Results and analysis of ChaLearn lap multi-modal isolated and continuous gesture recognition, and real versus fake expressed emotions challenges. In: ChaLearn LAP, Action, Gesture, and Emotion Recognition Workshop and Competitions: Large Scale Multimodal Gesture Recognition and Real versus Fake expressed emotions, ICCV, vol. 4 (2017)
Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3D dynamic facial expression database. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2008, pp. 1–6. IEEE (2008)
Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: 7th International Conference on Automatic face and gesture recognition, FGR 2006, pp. 211–216. IEEE (2006)
Zhang, K., Huang, Y., Du, Y., Wang, L.: Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE Trans. Image Process. 26(9), 4193–4203 (2017)
Zhang, X., et al.: BP4D-spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32(10), 692–706 (2014)
Acknowledgement
The authors would like to thank Michał Wasażnik (psychologist), who participated in experimental protocol creation. This work is supported Estonian Research Council Grant (PUT638), the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Proje 1001 - 116E097), Estonian-Polish Joint Research Project, the Estonian Centre of Excellence in IT (EXCITE) funded by the European Regional Development Fund. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan XP GPU used for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Sapiński, T., Kamińska, D., Pelikant, A., Ozcinar, C., Avots, E., Anbarjafari, G. (2019). Multimodal Database of Emotional Speech, Video and Gestures. In: Zhang, Z., Suter, D., Tian, Y., Branzan Albu, A., Sidère, N., Jair Escalante, H. (eds) Pattern Recognition and Information Forensics. ICPR 2018. Lecture Notes in Computer Science(), vol 11188. Springer, Cham. https://doi.org/10.1007/978-3-030-05792-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-05792-3_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05791-6
Online ISBN: 978-3-030-05792-3
eBook Packages: Computer ScienceComputer Science (R0)