Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multimodal Database of Emotional Speech, Video and Gestures

  • Conference paper
  • First Online:
Pattern Recognition and Information Forensics (ICPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11188))

Included in the following conference series:

Abstract

People express emotions through different modalities. Integration of verbal and non-verbal communication channels creates a system in which the message is easier to understand. Expanding the focus to several expression forms can facilitate research on emotion recognition as well as human-machine interaction. In this article, the authors present a Polish emotional database composed of three modalities: facial expressions, body movement and gestures, and speech. The corpora contains recordings registered in studio conditions, acted out by 16 professional actors (8 male and 8 female). The data is labeled with six basic emotions categories, according to Ekman’s emotion categories. To check the quality of performance, all recordings are evaluated by experts and volunteers. The database is available to academic community and might be useful in the study on audio-visual emotion recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baltrušaitis, T., et al.: Real-time inference of mental states from facial expressions and upper body gestures. In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), pp. 909–914. IEEE (2011)

    Google Scholar 

  2. Burkhardt, F., Paeschke, A., Rolfes, M., Sendlmeier, W.F., Weiss, B.: A database of German emotional speech. In: Ninth European Conference on Speech Communication and Technology (2005)

    Google Scholar 

  3. Camras, L.A., Oster, H., Campos, J.J., Miyake, K., Bradshaw, D.: Japanese and american infants’ responses to arm restraint. Dev. Psychol. 28(4), 578 (1992)

    Article  Google Scholar 

  4. Daneshmand, M., et al.: 3D scanning: a comprehensive survey. arXiv preprint arXiv:1801.08863 (2018)

  5. Douglas-Cowie, E., Cowie, R., Schröder, M.: A new emotion database: considerations, sources and scope. In: ISCA Tutorial and Research Workshop (ITRW) on Speech and Emotion (2000)

    Google Scholar 

  6. Efron, D.: Gesture and environment (1941)

    Google Scholar 

  7. Ekman, P.: Universal and cultural differences in facial expression of emotion. Nebr. Sym. Motiv. 19, 207–283 (1971)

    Google Scholar 

  8. Gavrilescu, M.: Recognizing emotions from videos by studying facial expressions, body postures and hand gestures. In: 2015 23rd Telecommunications Forum Telfor (TELFOR), pp. 720–723. IEEE (2015)

    Google Scholar 

  9. Gelder, B.D.: Why bodies? Twelve reasons for including bodily expressions in affective neuroscience. Philos. Trans. R. Soc. B: Biol. Sci. 364(364), 3475–3484 (2009)

    Article  Google Scholar 

  10. Goswami, G., Vatsa, M., Singh, R.: RGB-D face recognition with texture and attribute features. IEEE Trans. Inf. Forensics Secur. 9(10), 1629–1640 (2014)

    Article  Google Scholar 

  11. Greco, A., Valenza, G., Citi, L., Scilingo, E.P.: Arousal and valence recognition of affective sounds based on electrodermal activity. IEEE Sens. J. 17(3), 716–725 (2017)

    Article  Google Scholar 

  12. Gupta, R., Khomami Abadi, M., Cárdenes Cabré, J.A., Morreale, F., Falk, T.H., Sebe, N.: A quality adaptive multimodal affect recognition system for user-centric multimedia indexing. In: Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval, pp. 317–320. ACM (2016)

    Google Scholar 

  13. Haamer, R.E., et al.: Changes in facial expression as biometric: a database and benchmarks of identification. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 621–628. IEEE (2018)

    Google Scholar 

  14. Haque, M.A., et al.: Deep multimodal pain recognition: a database and comparison of spatio-temporal visual modalities. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 250–257. IEEE (2018)

    Google Scholar 

  15. Hg, R., Jasek, P., Rofidal, C., Nasrollahi, K., Moeslund, T.B., Tranchet, G.: An RGB-D database using microsoft’s kinect for windows for face detection. In: 2012 Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 42–46. IEEE (2012)

    Google Scholar 

  16. Jenke, R., Peer, A., Buss, M.: Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. 5(3), 327–339 (2014)

    Article  Google Scholar 

  17. Jerritta, S., Murugappan, M., Wan, K., Yaacob, S.: Emotion recognition from facial EMG signals using higher order statistics and principal component analysis. J. Chin. Inst. Eng. 37(3), 385–394 (2014)

    Article  Google Scholar 

  18. Kamińska, D., Sapiński, T., Anbarjafari, G.: Efficiency of chosen speech descriptors in relation to emotion recognition. EURASIP J. Audio Speech Music Process. 2017(1), 3 (2017)

    Article  Google Scholar 

  19. Kendon, A.: The study of gesture: some remarks on its history. In: Deely, J.N., Lenhart, M.D. (eds.) Semiotics 1981, pp. 153–164. Springer, Heidelberg (1983). https://doi.org/10.1007/978-1-4615-9328-7_15

    Chapter  Google Scholar 

  20. Kiforenko, L., Kraft, D.: Emotion recognition through body language using RGB-D sensor. Vision Theory and Applications Computer Vision Theory and Applications, pp. 398–405. SCITEPRESS Digital Library (2016) In: 11th International Conference on Computer Vision Theory and Applications Computer Vision Theory and Applications, pp. 398–405. SCITEPRESS Digital Library (2016)

    Google Scholar 

  21. Lopes, A.T., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T.: Facial expression recognition with convolutional neural networks: coping with few data and the training sample order. Pattern Recognit. 61, 610–628 (2017)

    Article  Google Scholar 

  22. Lüsi, I., Escarela, S., Anbarjafari, G.: SASE: RGB-depth database for human head pose estimation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 325–336. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_26

    Chapter  Google Scholar 

  23. Min, R., Kose, N., Dugelay, J.L.: KinectFaceDB: a kinect database for face recognition. IEEE Trans. Syst. Man Cybern. Syst. 44(11), 1534–1548 (2014)

    Article  Google Scholar 

  24. Noroozi, F., Corneanu, C.A., Kamińska, D., Sapiński, T., Escalera, S., Anbarjafari, G.: Survey on emotional body gesture recognition. arXiv preprint arXiv:1801.07481 (2018)

  25. Noroozi, F., Sapiński, T., Kamińska, D., Anbarjafari, G.: Vocal-based emotion recognition using random forests and decision tree. Int. J. Speech Technol. 20(2), 239–246 (2017)

    Article  Google Scholar 

  26. Pease, B., Pease, A.: The Definitive Book of Body Language. Bantam, New York City (2004)

    MATH  Google Scholar 

  27. Pławiak, P., Sośnicki, T., Niedźwiecki, M., Tabor, Z., Rzecki, K.: Hand body language gesture recognition based on signals from specialized glove and machine learning algorithms. IEEE Trans. Ind. Inform. 12(3), 1104–1113 (2016)

    Article  Google Scholar 

  28. Plutchik, R.: The nature of emotions human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89(4), 344–350 (2001)

    Article  Google Scholar 

  29. Psaltis, A., et al.: Multimodal affective state recognition in serious games applications. In: 2016 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 435–439. IEEE (2016)

    Google Scholar 

  30. Ranganathan, H., Chakraborty, S., Panchanathan, S.: Multimodal emotion recognition using deep learning architectures. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)

    Google Scholar 

  31. Russell, J., Mehrabian, A.: Evidence for a three-factor theory of emotions. J. Res. Pers. 11, 273–294 (1977)

    Article  Google Scholar 

  32. Savran, A., Alyüz, N., Dibeklioğlu, H., Çeliktutan, O., Gökberk, B., Sankur, B., Akarun, L.: Bosphorus database for 3D face analysis. In: Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M. (eds.) BioID 2008. LNCS, vol. 5372, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89991-4_6

    Chapter  Google Scholar 

  33. Wan, J., et al.: Results and analysis of ChaLearn lap multi-modal isolated and continuous gesture recognition, and real versus fake expressed emotions challenges. In: ChaLearn LAP, Action, Gesture, and Emotion Recognition Workshop and Competitions: Large Scale Multimodal Gesture Recognition and Real versus Fake expressed emotions, ICCV, vol. 4 (2017)

    Google Scholar 

  34. Yin, L., Chen, X., Sun, Y., Worm, T., Reale, M.: A high-resolution 3D dynamic facial expression database. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2008, pp. 1–6. IEEE (2008)

    Google Scholar 

  35. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3D facial expression database for facial behavior research. In: 7th International Conference on Automatic face and gesture recognition, FGR 2006, pp. 211–216. IEEE (2006)

    Google Scholar 

  36. Zhang, K., Huang, Y., Du, Y., Wang, L.: Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE Trans. Image Process. 26(9), 4193–4203 (2017)

    Article  MathSciNet  Google Scholar 

  37. Zhang, X., et al.: BP4D-spontaneous: a high-resolution spontaneous 3D dynamic facial expression database. Image Vis. Comput. 32(10), 692–706 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Michał Wasażnik (psychologist), who participated in experimental protocol creation. This work is supported Estonian Research Council Grant (PUT638), the Scientific and Technological Research Council of Turkey (TÜBİTAK) (Proje 1001 - 116E097), Estonian-Polish Joint Research Project, the Estonian Centre of Excellence in IT (EXCITE) funded by the European Regional Development Fund. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan XP GPU used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorota Kamińska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sapiński, T., Kamińska, D., Pelikant, A., Ozcinar, C., Avots, E., Anbarjafari, G. (2019). Multimodal Database of Emotional Speech, Video and Gestures. In: Zhang, Z., Suter, D., Tian, Y., Branzan Albu, A., Sidère, N., Jair Escalante, H. (eds) Pattern Recognition and Information Forensics. ICPR 2018. Lecture Notes in Computer Science(), vol 11188. Springer, Cham. https://doi.org/10.1007/978-3-030-05792-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05792-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05791-6

  • Online ISBN: 978-3-030-05792-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics