Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid Data Mining to Reduce False Positive and False Negative Prediction in Intrusion Detection System

  • Conference paper
  • First Online:
Advances in Information and Communication Networks (FICC 2018)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 887))

Included in the following conference series:

  • 1031 Accesses

Abstract

This paper proposes an approach of data mining machine learning methods for reducing the false positive and false negative predictions in existing Intrusion Detection Systems (IDS). It describes our proposal for building a confidential strong intelligent intrusion detection system which can save data and networks from potential attacks, having recognized movement or infringement regularly reported ahead or gathered midway. We have addressed different data mining methodologies and presented some recommended approaches which can be built together to enhance security of the system. The approach will reduce the overhead of administrators, who can be less concerned about the alerts as they have been already classified and filtered with less false positive and false negative alerts. Here we have made use of KDD-99 IDS dataset for details analysis of the procedures and algorithms which can be implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu, L., Jiang, C., Wang, J., Yuan, J., Ren, Y.: Information security in big data: privacy and data mining. IEEE Access 2, 1149–1176 (2014)

    Article  Google Scholar 

  2. Yu, C.H., Ward, M.W., Morabito, M., Ding, W.: Crime forecasting using data mining techniques. In: 2011 IEEE 11th International Conference on Data Mining Workshops, pp. 779–786. IEEE (2011)

    Google Scholar 

  3. Hajian, S., Domingo-Ferrer, J., Martinez-Balleste, A.: Discrimination prevention in data mining for intrusion and crime detection. In: 2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS), pp. 47–54. IEEE (2011)

    Google Scholar 

  4. Xu, J., Yu, Y., Chen, Z., Cao, B., Dong, W., Guo, Y., Cao, J.: Mobsafe: cloud computing based forensic analysis for massive mobile applications using data mining. Tsinghua Sci. Technol. 18(4), 418–427 (2013)

    Article  Google Scholar 

  5. Bhattacharyya, S., Jha, S., Tharakunnel, K., Westland, J.C.: Data mining for credit card fraud: a comparative study. Decis. Support Syst. 50(3), 602–613 (2011)

    Article  Google Scholar 

  6. Hu, Y., Panda, B.: A data mining approach for database intrusion detection. In: Proceedings of the 2004 ACM Symposium on Applied Computing, pp. 711–716. ACM (2004)

    Google Scholar 

  7. Ravisankar, P., Ravi, V., Rao, G.R., Bose, I.: Detection of financial statement fraud and feature selection using data mining techniques. Decis. Support Syst. 50(2), 491–500 (2011)

    Article  Google Scholar 

  8. Erskine, J.R., Peterson, G.L., Mullins, B.E., Grimaila, M.R.: Developing cyberspace data understanding: using CRISP-DM for host-based IDS feature mining. In: Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research, p. 74. ACM (2010)

    Google Scholar 

  9. Lee, W., Stolfo, S.J., Mok, K.W.: A data mining framework for building intrusion detection models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy, 1999, pp. 120–132. IEEE (1999)

    Google Scholar 

  10. Feng, W., Zhang, Q., Hu, G., Huang, J.X.: Mining network data for intrusion detection through combining SVMs with ant colony networks. Future Gener. Comput. Syst. 37, 127–140 (2014)

    Article  Google Scholar 

  11. Portnoy, L., Eskin, E., Stolfo, S.: Intrusion detection with unlabeled data using clustering. In: Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001) (2001)

    Google Scholar 

  12. Julisch, K., Dacier, M.: Mining intrusion detection alarms for actionable knowledge. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 366–375. ACM (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bala Palanisamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Palanisamy, B., Panja, B., Meharia, P. (2019). Hybrid Data Mining to Reduce False Positive and False Negative Prediction in Intrusion Detection System. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Advances in Information and Communication Networks. FICC 2018. Advances in Intelligent Systems and Computing, vol 887. Springer, Cham. https://doi.org/10.1007/978-3-030-03405-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03405-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03404-7

  • Online ISBN: 978-3-030-03405-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics