Nothing Special   »   [go: up one dir, main page]

Skip to main content

UFO RPN: A Region Proposal Network for Ultra Fast Object Detection

  • Conference paper
  • First Online:
AI 2021: Advances in Artificial Intelligence (AI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13151))

Included in the following conference series:

Abstract

Deep learning enables high accuracy in object detection in comparison with alternative methods. However deep learning based algorithms are often computationally expensive. That limits the use in many real world scenarios. For decades, researchers have been working on speeding up object detection. One bottleneck in current state-of-the-art methods is the region proposal generation stage as hundreds and thousands of proposed regions need to be processed before detection. Most of the regions are background areas which do not contribute to the actual detection. To improve the efficiency, we propose a region proposal network that can significantly reduce background while maintaining high accuracy. The comparison with SOTA methods shows that our network can be up to 70 times faster, since it only contains 1/15 to 1/150 parameters relative to these methods. The class IoU for MS COCO subsets achieves 40% to 70% and the inference speed on GTX 1080Ti can achieve above 1000 FPS performance. In addition, our study shows that high resolution input is not a must for high accuracy. The use of down-sampled images can further reduce computation costs while retaining or even improving accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duan, L., Gu, J., Yang, Z., Miao, J., Ma, W., Wu, C.: Bio-inspired visual attention model and saliency guided object segmentation. In: Pan, J.-S., Krömer, P., Snášel, V. (eds.) Genetic and Evolutionary Computing, pp. 291–298. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-01796-9_31

    Chapter  Google Scholar 

  2. Everingham, M., Van Gool, L., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes challenge 2012 (voc2012) results (2012). http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html

  3. Fattal, A.K., Karg, M., Scharfenberger, C., Adamy, J.: Saliency-guided region proposal network for CNN based object detection. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8. IEEE (2017)

    Google Scholar 

  4. Feng, J., Wei, Y., Tao, L., Zhang, C., Sun, J.: Salient object detection by composition. In: 2011 International Conference on Computer Vision, pp. 1028–1035. IEEE (2011)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  6. Guo, M., Zhao, Y., Zhang, C., Chen, Z.: Fast object detection based on selective visual attention. Neurocomputing 144, 184–197 (2014)

    Article  Google Scholar 

  7. Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 814–830 (2015)

    Article  Google Scholar 

  8. Hu, J.Y., Shi, C.J.R., Zhang, J.S.: Saliency-based yolo for single target detection. Knowl. Inf. Syst. 63(3), 717–732 (2021)

    Google Scholar 

  9. Jiang, Z., Zhao, L., Li, S., Jia, Y.: Real-time object detection method based on improved yolov4-tiny. arXiv preprint arXiv:2011.04244 (2020)

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Ling, H., Qin, Y., Zhang, L., Shi, Y., Li, P.: Selective convolutional network: an efficient object detector with ignoring background. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4462–4466. IEEE (2020)

    Google Scholar 

  13. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  14. Long, X., et al.: PP-YOLO: an effective and efficient implementation of object detector. arXiv preprint arXiv:2007.12099 (2020)

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  16. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  17. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. arXiv preprint arXiv:1506.01497 (2015)

  18. Ren, Z., Gao, S., Chia, L.T., Tsang, I.W.H.: Region-based saliency detection and its application in object recognition. IEEE Trans. Circuits Syst. Video Technol. 24(5), 769–779 (2013)

    Article  Google Scholar 

  19. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vision 104(2), 154–171 (2013)

    Article  Google Scholar 

  20. Wang, W., Shen, J., Shao, L.: Video salient object detection via fully convolutional networks. IEEE Trans. Image Process. 27(1), 38–49 (2017)

    Article  MathSciNet  Google Scholar 

  21. Yohanandan, S., Song, A., Dyer, A.G., Tao, D.: Saliency preservation in low-resolution grayscale images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 237–254. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_15

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenkai Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Song, A. (2022). UFO RPN: A Region Proposal Network for Ultra Fast Object Detection. In: Long, G., Yu, X., Wang, S. (eds) AI 2021: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13151. Springer, Cham. https://doi.org/10.1007/978-3-030-97546-3_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-97546-3_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-97545-6

  • Online ISBN: 978-3-030-97546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics