Nothing Special   »   [go: up one dir, main page]

Skip to main content

Recommendation Engine of Learning Contents and Activities Based on Learning Analytics

  • Conference paper
  • First Online:
New Realities, Mobile Systems and Applications (IMCL 2021)

Abstract

Recommendation engines are being increasingly deployed into the e-learning systems. This paper proposes a software architecture for recommending learning content and learning activities, which has been validated by means of a case study. The main goal of that architecture is to achieve better recommendations of learning content and learning activities not only in systems, but also in similar e-learning environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhou, Y., Huang, C., Hu, Q., Zhu, J., Tang, Y.: Personalized learning full-path recommendation model based on LSTM neural networks. Inf. Sci. 444, 135–152 (2018)

    Article  Google Scholar 

  2. Aleksieva-Petrova, A., Petrov, M.: Formal Specification of Aptitude Architecture for Recommendation and Adaptation of Learning Contents and Activities Based on Learning Analytics. Research Book Series: Transactions on Computational Science & Computational Intelligence (2021) in print

    Google Scholar 

  3. Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10(12), 2935–2962 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Rawat, B., Samriya, J.K., Pandey, N., Wariyal, S.C.: A comprehensive study on recommendation systems their issues and future research direction in e-learning domain. In: Materials Today: Proceedings (2020)

    Google Scholar 

  5. Nasiri, S., Zenkert, J., Fathi, M.: Improving CBR adaptation for recommendation of associated references in a knowledge-based learning assistant system. Neurocomputing 250, 5–17 (2017)

    Article  Google Scholar 

  6. Wan, S., Niu, Z.: An e-learning recommendation approach based on the self-organization of learning resource. Knowl. Based Syst. 160, 71–87 (2018)

    Article  Google Scholar 

  7. Bagherifard, K., Rahmani, M., Nilashi, M., Rafe, V.: Performance improvement for recommender systems using ontology. Telematics Inform. 34(8), 1772–1792 (2017)

    Article  Google Scholar 

  8. Shi, D., Wang, T., Xing, H., Xu, H.: A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning. Knowl. Based Syst. 195, 105618 (2020)

    Article  Google Scholar 

  9. Neville, K.J., Folsom-Kovarik, J.T.: Recommendation across many learning systems to optimize teaching and training. In: International Conference on Applied Human Factors and Ergonomics, pp. 212–221. Springer, Cham (2018)

    Google Scholar 

  10. Ali, S., Hafeez, Y., Humayun, M., Jamail, N.S.M., Aqib, M., Nawaz, A.: Enabling recommendation system architecture in virtualized environment for e-learning. Egypt. Inf. J. 23, 33–45 (2021)

    Google Scholar 

  11. De Medio, C., Limongelli, C., Sciarrone, F., Temperini, M.: MoodleREC: a recommendation system for creating courses using the moodle e-learning platform. Comput. Hum. Behav. 104, 106168 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

The research reported here was funded under a project entitled “An innovative software platform for big data learning and gaming analytics for a user-centric adaptation of technology enhanced learning (APTITUDE)” - research projects on societal challenges – 2018 by the Bulgarian National Science Fund with contract №: KP-06OPR03/1 from 13.12.2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adelina Aleksieva-Petrova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aleksieva-Petrova, A., Petrov, M. (2022). Recommendation Engine of Learning Contents and Activities Based on Learning Analytics. In: Auer, M.E., Tsiatsos, T. (eds) New Realities, Mobile Systems and Applications. IMCL 2021. Lecture Notes in Networks and Systems, vol 411. Springer, Cham. https://doi.org/10.1007/978-3-030-96296-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96296-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96295-1

  • Online ISBN: 978-3-030-96296-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics