Nothing Special   »   [go: up one dir, main page]

Skip to main content

Rewriting Logic and Petri Nets: A Natural Model for Reconfigurable Distributed Systems

  • Conference paper
  • First Online:
Distributed Computing and Intelligent Technology (ICDCIT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13145))

Abstract

Petri Nets (PN) are a central model for concurrent or distributed systems, but not expressive enough to represent dynamically reconfigurable systems. On the other side, Rewriting Logic has proved to be a natural framework for several formal models of distributed systems. We propose an efficient Maude formalization of dynamically reconfigurable PT nets (with inhibitor arcs), using as a running example a fault-tolerant manufacturing system. We discuss the advantages of such a hybrid approach, as well as some concerns that are raised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A kind is an implicit equivalence class gathering all sorts connected by the subsort relation; terms having a kind but not a sort may be considered as undefined or errors.

  2. 2.

    R rules don’t apply to frozen arguments; in the paper we do not use frozen arguments.

  3. 3.

    Maude uses views to instantiate the type-parameters (theories) of a generic module to concrete modules. In this context, theories and views are very intuitive.

  4. 4.

    S and \(S'\) are isomorphic iff there are a two bijections \(\phi _p: P \rightarrow P'\), \(\phi _t: T \rightarrow T'\), preserving the edges and the initial markings.

  5. 5.

    \(\sigma \) nay be empty is u is a ground term; if r is a conditional rule \(\sigma \) may involve free variables introduced by matching equations used in the rule’s condition.

  6. 6.

    Using the LTL modules we can even check that the initial marking is a home-state.

  7. 7.

    Computed with the GreatSPN tool (github.com/greatspn/SOURCES).

References

  1. Barbosa, P., et al.: SysVeritas: a framework for verifying IOPT nets and execution semantics within embedded systems design. In: Camarinha-Matos, L.M. (ed.) DoCEIS 2011. IAICT, vol. 349, pp. 256–265. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19170-1_28

    Chapter  Google Scholar 

  2. Bouhoula, A., Jouannaud, J.P., Meseguer, J.: Specification and proof in membership equational logic. Theor. Comput. Sci. 236(1), 35–132 (2000). https://doi.org/10.1016/S0304-3975(99)00206-6

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruni, R., Meseguer, J.: Generalized rewrite theories. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 252–266. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_22

    Chapter  Google Scholar 

  4. Burstall, R.M., Goguen, J.A.: Algebras, theories and freeness: an introduction for computer scientists. In: Broy, M., Schmidt, G. (eds.) Theoretical Foundations of Programming Methodology: Lecture Notes of an International Summer School, directed by F. L. Bauer, E. W. Dijkstra and C. A. R. Hoare, pp. 329–349. Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-009-7893-5_11

  5. Camilli, M., Capra, L.: Formal specification and verification of decentralized self-adaptive systems using symmetric nets. Discrete Event Dyn. Syst. 31(4), 609–657 (2021). https://doi.org/10.1007/s10626-021-00343-3

    Article  MathSciNet  MATH  Google Scholar 

  6. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework: How to Specify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

    Book  MATH  Google Scholar 

  7. Ehrig, H., Hoffmann, K., Padberg, J., Prange, U., Ermel, C.: Independence of net transformations and token firing in reconfigurable place/transition systems. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 104–123. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73094-1_9

    Chapter  MATH  Google Scholar 

  8. Ehrig, H., Padberg, J.: Graph grammars and petri net transformations. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 496–536. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_14

    Chapter  MATH  Google Scholar 

  9. Kahloul, L., Chaoui, A., Djouani, K.: Modeling and analysis of reconfigurable systems using flexible petri nets. In: Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E. (eds.) Networked Digital Technologies, pp. 343–357. Springer, Heidelberg (2010). https://doi.org/10.1109/TASE.2010.28

  10. Köhler-Bußmeier, M.: Hornets: nets within nets combined with net algebra. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 243–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02424-5_15

    Chapter  MATH  Google Scholar 

  11. Llorens, M., Oliver, J.: Structural and dynamic changes in concurrent systems: reconfigurable petri nets. IEEE Trans. Comput. 53(9), 1147–1158 (2004). https://doi.org/10.1109/TC.2004.66

    Article  Google Scholar 

  12. Meseguer, J.: Membership algebra as a logical framework for equational specification. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4_26

    Chapter  Google Scholar 

  13. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992). https://doi.org/10.1016/0304-3975(92)90182-F

    Article  MathSciNet  MATH  Google Scholar 

  14. Padberg, J., Kahloul, L.: Overview of reconfigurable petri nets. In: Heckel, R., Taentzer, G. (eds.) Graph Transformation, Specifications, and Nets. LNCS, vol. 10800, pp. 201–222. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75396-6_11

    Chapter  MATH  Google Scholar 

  15. Padberg, J., Schulz, A.: Model checking reconfigurable petri nets with Maude. In: Echahed, R., Minas, M. (eds.) ICGT 2016. LNCS, vol. 9761, pp. 54–70. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40530-8_4

    Chapter  Google Scholar 

  16. Prange, U., Ehrig, H., Hoffmann, K., Padberg, J.: Transformations in reconfigurable place/transition systems. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birthday. LNCS, vol. 5065, pp. 96–113. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68679-8_7

    Chapter  Google Scholar 

  17. Reisig, W.: Petri Nets: An Introduction. Springer-Verlag, New York Inc., New York (1985). https://doi.org/10.1007/978-3-642-69968-9

  18. Stehr, M.-O., Meseguer, J., Ölveczky, P.C.: Rewriting logic as a unifying framework for petri nets. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying Petri Nets. LNCS, vol. 2128, pp. 250–303. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45541-8_9

    Chapter  MATH  Google Scholar 

  19. Valk, R.: Object petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 819–848. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_23

    Chapter  MATH  Google Scholar 

  20. Viola, E.: E-unifiability via narrowing. In: ICTCS 2001. LNCS, vol. 2202, pp. 426–438. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45446-2_27

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Capra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capra, L. (2022). Rewriting Logic and Petri Nets: A Natural Model for Reconfigurable Distributed Systems. In: Bapi, R., Kulkarni, S., Mohalik, S., Peri, S. (eds) Distributed Computing and Intelligent Technology. ICDCIT 2022. Lecture Notes in Computer Science(), vol 13145. Springer, Cham. https://doi.org/10.1007/978-3-030-94876-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94876-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94875-7

  • Online ISBN: 978-3-030-94876-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics