Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

This chapter presents a self-consistent, science-based mathematical model for representing the most destructive part of the lightning flash: the lightning return stroke. It presents the validation of representing the lightning return stroke wave as an electromagnetic wave. Following from that, the chapter presents the modeling of the return stroke electromagnetic wave using a distributed electric circuit model, which is an approximation of the electromagnetic phenomena. The electric circuit model is connected to the generation of the lightning electric and magnetic pulses (LEMP) radiated by the lightning return stroke currents. The lightning return stroke model and the calculation of the radiated LEMP provide a self-contained computer-based model to determine the most important parameters required by the lightning protection engineer for designing the protection of both ground and airborne electrical/electronic systems and structures. The computer-based tool is validated by comparing computer-simulated results for cloud to ground lightning flash to ground-based return stroke current and LEMP measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ajayi, N.O.: Acoustic observation of thunder and cloud-to-ground flashes. J. Geophys. Res. 77, 4586–4587 (1972)

    Article  Google Scholar 

  • Baba, Y., Rakov, V.A.: On the mechanism of attenuation of current waves propagating along a vertical perfectly conducting wire above ground: application to lightning. IEEE Trans. Electromagn. Compat. 47(3), 521–532 (2005)

    Google Scholar 

  • Baba, Y., Rakov V.A.: Electromagnetic models of the lightning return stroke. J. Geophys. Res. 112, D04102 (2007)

    Google Scholar 

  • Balachandran, N.K.: Acoustic and electrical signals from lightning. J. Geophys. Res. 88, 3879–3884 (1983)

    Article  Google Scholar 

  • Barry, J.D.: Ball Lightning and Bead Lightning, Plenum (1980)

    Google Scholar 

  • Berger, K.: Novel observations on lightning discharges: results of research on Mount San Salvatore. J. Franklin. Inst. 283, 478–525 (1967)

    Article  Google Scholar 

  • Berger, K., Anderson, R.B., Kroninger, H.: Parameters of lightning flashes. Electra. 41, 23–37 (1975)

    Google Scholar 

  • Berger, K.: Earth flash, in lightning: physics of lightning. In: Golde, R.H. (ed.), pp. 119–190. Academic Press (1997)

    Google Scholar 

  • Betz, H.D., Schumann, U., Laroche, P. (eds.): Lightning: Principles, Instruments and Applications, Springer (2009)

    Google Scholar 

  • Braginskii, S.I.: Theory of the development of a spark channel. Soc. Phys. JEPT (English translation) 34:1068–1074 (1958)

    Google Scholar 

  • Bruce, C.E.R., Golde, R.H.: The lightning discharge. J. Inst. Electr. Eng. 88, 487–520 (1941)

    Google Scholar 

  • Cooray, V.: Further Characteristics of Positive radiation Fields from Lightning in Sweden. J. Geophys. Res. 89, 11807–11815 (1984)

    Article  Google Scholar 

  • Cooray, V.: A model for subsequent return strokes. J. Electrostst. 30, 343–354 (1993)

    Article  Google Scholar 

  • Cooray, V.: On the concepts used in return stroke models applied to engineering practice. IEEE Trans. Electromagn. Compat. 45(1), 101–108 (2003)

    Article  Google Scholar 

  • Cooray, V., Lundquist, P.: On characteristics of some radiation fields from lightning and their further origin in positive ground flashes. J. Geophys. Res. 87, 11203–11214 (1982)

    Article  Google Scholar 

  • Cooray, V., Theethayi, N.: Pulse propagation along transmission lines in the presence of corona and their implications to lightning return strokes. IEEE Trans. Antenna Propag. 56(7), 1948–1959 (2008)

    Article  Google Scholar 

  • Cooray, V. (ed.): The Lightning Flash. IET (2003)

    Google Scholar 

  • Cooray, V. (ed.): Lightning Protection. IET (2010)

    Google Scholar 

  • Cooray, V. (ed.): Lightning Electromagnetics. IET (2012)

    Google Scholar 

  • da Frota Mattos M.A., Christopoulos, C.: A nonlinear transmission line model of the lightning return stroke. IEEE Trans. Electromagn. Compat. 30, 401–406 (1988)

    Google Scholar 

  • da Frota Mattos M.A., Christopoulos C.: A model of the lightning channel, including corona, and prediction. J. Phys., D Appl. Phys. 23, 40–46 (1990)

    Google Scholar 

  • Deindorfer, D., Uman, M.A.: An improved return stroke model with specified channel base current. J. Geophys. Res. 95, 13621–13664 (1990)

    Article  Google Scholar 

  • von Engel, A.: Electric Plasmas. Taylor and Francis, London (1981)

    Google Scholar 

  • Feiux, R.P., Gary, C.H., Hutzler, B.P., Eyebert-Berrard, A.R., Hubert, R.A., Meesters, A.C., Pettroud, P.H., Hamelin, J.H., Person, J.M.: Research on artificially triggered lightning in France. IEEE Trans. Power Apparat. Systs. 94, 725–733 (1978)

    Article  Google Scholar 

  • Few A.A.: Acoustic radiations from lightning. In: Volland, H. (ed.): Handbook of Atmospherics, vol. 2, CRC Press (1981)

    Google Scholar 

  • Fisher, R.J., Uman, M.A.: Measured electric field rise times for first and subsequent return strokes. J. Geophys. Res. 77, 399–407 (1972)

    Article  Google Scholar 

  • Fowler, R.G.: Lightning. Appl. Collision Phys. 5, 31–67 (1982)

    Google Scholar 

  • Golde, R.H. (Ed.): Lightning, Vol 1: Physics of Lightning. Academic Press (1977)

    Google Scholar 

  • Golde, R.H.: Lightning, Vol. 2: Engineering Applications. Academic Press (1977)

    Google Scholar 

  • Guo, C., Krider, E.P.: The optical and radiation electric field signatures produced by lightning return strokes. J. Geophys. 87, 8913–8922 (1982)

    Article  Google Scholar 

  • Hoole, P.R.P.: Doctor of Philosophy Thesis. Oxford University, Department of Engineering Science (1987)

    Google Scholar 

  • Hoole, P.R.P.: Simulation of lightning attachment to open ground, tall towers and aircraft. IEEE Trans. Power Delivery 8(2), 732–738 (1993)

    Article  Google Scholar 

  • Hoole, P.R.P.: Modeling the lightning earth flash return stroke for studying its effects on engineering systems. IEEE Trans. Magnet. 29, 1839–1844 (1993)

    Article  Google Scholar 

  • Hoole, P.R.P.: Electromagnetic Imaging in Science and Medicine. WIT Press, UK (2000)

    Google Scholar 

  • Hoole, P.R.P., Hoole, S.R.H.: Guided waves along an un-magnetized lightning plasma channel. IEEE Trans. Magn. 24(6), 3165–3167 (1988)

    Article  Google Scholar 

  • Hoole, P.R.P., Hoole, S.R.H.: A distributed transmission line model of cloud-to-ground lightning return stroke: model verification, return stroke velocity, unmeasured currents and radiated fields. Int. J. Phys. Sci., UK 6, 3851–3866 (2011)

    Google Scholar 

  • Hoole, P.R.P., Hoole, S.R.H.: Charge simulation method for the calculation of electromagnetic fields radiated from lightning. In: Conner, J.J., Brebbia, C.A. (eds.) Boundary Element Technology, pp. 153–169. Computational Mechanics Publications, Southampton (1986)

    MATH  Google Scholar 

  • Hoole, P.R.P., Pirapaharan, K., Hoole, S.R.H.: An electromagnetic field based signal processor for mobile communication position-velocity estimation and digital beam-forming: an overview. J. Jpn. Soc. Appl. Electromagn. Mech., Japan 19, S33–S36 (2011)

    Google Scholar 

  • Hoole, P.R.P., Pirapaharan, K., Hoole, S.R.H.: Waveguide and circuit EM models of lightning return stroke currents. J. Jpn. Soc. Appl. Electromagn. Mech., Japan 19, S167–S170 (2011)

    Google Scholar 

  • Hoole, P.R.P., Pirapaharan, K., Hoole, S.R.H.: Waveguide and circuit EM models of lightning return stroke currents. J. Jpn. Soc. Appl. Electromagn. Mech., Japan 19, S167–S170 (2011)

    Google Scholar 

  • Hoole, P.R.P., Pirapaharan, K., Hoole, S.R.H.: Electromagnetics Engineering Handbook. WIT Press, UK (2013)

    Google Scholar 

  • Hoole, P.R.P., Pirapaharan, K., Kavi, M., Fisher, J., Aziz, N.F., Hoole, S.R.H.: Intelligent localisation of signals using the signal wavefronts: a review. In: Lightning Protection (ICLP), International Conference, pp. 474–479. IEEE Xplore Library (2014)

    Google Scholar 

  • Hoole, P.R.P., Hoole, S.R.H.: Simulation of lightning attachment to open ground tall towers and aircraft. IEEE Trans. Power Delivery 8(22), 732–740. Institute of Electrical and Electronics Engineers (1993)

    Google Scholar 

  • Hoole, P.R.P., Hoole, S.R.H.: Finite element computation of magnetic fields from lightning return strokes. In: Cendes, Z.J. (ed.) Computational Electromagnetics, North Holland, pp. 229–237, July 1986

    Google Scholar 

  • Hoole, P.R.P., Pearmain, A.J.: A review of the finite-difference method for multidielectric electric field calculations. J. Electr. Power Syst. Res. 24(11), 19–30. Elsevier (1992)

    Google Scholar 

  • Hoole, P.R.P., Thirukumaran, S., Hoole, S.R.H., Harikrishnan, R., Jievan, K.: Ground to cloud lightning flash currents and electric fields: interaction with aircraft and production of ionospheric sprites. In: Proceedings of the 28th International Review of Progress in Applied Computational Electromagnetics, 6 p., Michigan, USA (2012)

    Google Scholar 

  • Hoole, P.R.P., K. Pirapaharan, K., Hoole, S.R.H.: Waveguide and circuit em models of lightning return stroke currents. J. Jpn. Soc. Appl. Electromagn. Mech. Japan 19, S167–S170 (2011)

    Google Scholar 

  • Hoole, P.R.P., Thirikumaran, S., Ramiah, H., Kanesan, J., Hoole, S.R.H.: Ground to cloud lightning flash and electric fields: interaction with aircraft and production of ionospheric sprites. J. Comput. Eng., Article ID 869452 (2014). https://doi.org/10.1155/2014/869452

  • Hoole, P.R.P., Thirukumaran S., Hoole, S.R.H.: A software testbed for electrodynamics of direct cloud to ground and ground to cloud lightning flashes to aircraft. Int. J. Appl. Electromagn. Mech. 47(4), 911–925 (2015)

    Google Scholar 

  • Hoole, P.R.P., Fisher, J., Pirapaharan, K., Al K. H. Othman, Julai, N., Aravind, C.V., Senthilkumar, K.S., Hoole, S.R.H.: Determining safe electrical zones for placing aircraft navigation. Measurement and microelectronic systems in static thunderstorm environment. Int. J. Control Theory Appl. 10(16) (2017)

    Google Scholar 

  • Hoole, P.R.P., Balasuriya, B.A.A.P.: Lightning radiated electromagnetic fields and high voltage test specifications. IEEE Trans. Magnet. 29(2), 1845–1848 (1993)

    Google Scholar 

  • Hoole, P.R.P., Hoole, S.R.H.: Computer aided identification and location of discharge sources. J. App. Phys. 61 (1987b)

    Google Scholar 

  • Hoole, P.R.P., Hoole, S.R.H.: Computing transient electromagnetic fields from lightning. J. Appl. Phys. 61, 3473 ff (1988)

    Google Scholar 

  • Hoole, P.R.P., Hoole, S.R.H: Stability and accuracy of the finite difference time domain (FDTD) method to determine transmission line traveling wave voltages and currents. J. Eng. Technol. Res. (2011)

    Google Scholar 

  • Hoole, P.R.P.: Smart Antennas and Electromagnetic Signal processing for Advanced Wireless Technology: with Artificial Intelligence and Codes. River Publisher (2020)

    Google Scholar 

  • Hoole, P.R.P.: Smart Antennas and Signal Processing for Communication, Medical and Radar Systems. WIT Press, UK (2001) (See IEE review of this book close to the end of this document)

    Google Scholar 

  • Hoole, S.R.H., Hoole, P.R.P.: A Modern Short Course in Engineering Electromagnetics. Oxford University Press, USA (1996)

    Google Scholar 

  • Hoole P.R.P., Hoole, S.R.H.: Computing transient electromagnetic fields radiated from lightning. J. Appl. Phys. 61(8), 3473–3475 (1987a)

    Google Scholar 

  • Idone I.P., Orville R,E.: Correlated peak intensity light intensity and peak current in triggered lightning subsequent strokes. J. Geophys. Res. 90(D4), 6159–6164 (1985)

    Google Scholar 

  • Jordon, D.M., Uman, M.A.: Variations in light intensity with height and time from subsequent return strokes. J. Geophys. Res. 88, 6555–6562 (1983)

    Article  Google Scholar 

  • Lin, Y.T., Uman, M.A.: Electric radiation fields of lightning return strokes in three isolated florida thunderstorms. J. Geophys. Res. 78, 7911–7914 (1973)

    Article  Google Scholar 

  • Lin, Y.T., Uman, M.A., Tiller, J.A., Brantley, R.D., Beasley, W.H., Krider, E.P., Weidman, C.D.: Characterization of lightning return stroke electric and magnetic fields from simultaneous two- station measurements. J. Geophys. Res 84, 6307–6314 (1979)

    Article  Google Scholar 

  • Little, P.F.: Transmission line representation of a lightning return stroke. J. Phys. D: Appl. Phys. 11, 1893–1910 (1978)

    Article  Google Scholar 

  • Master, M.J., Uman, M.A., Lin, Y.T., Standler, K.B.: Calculations of lightning return stroke electric and magnetic fields above ground. J. Geophys. Res. 86, 12127–12132 (1981)

    Article  Google Scholar 

  • Moosavi S.S., Moini, R., Sagdeghi, R.: Representation of a lightning return stroke as a nonlinearly loaded thin-wire antenna. IEEE Trans. Electromagnet. Compat. 51(3), 488–498 (2009)

    Google Scholar 

  • Mosaddeghi, A., Pavanello, D., Rachidi, F., Rubenstein, A.: On the inversion of the electric field at very close range from a tower struck by lightning. J. Geophys. Res 112, D19113 (2007)

    Article  Google Scholar 

  • Nayak, S.K., Meledash, T: Lightning induced current and voltage on a rocket in the presence of its trailing plume. IEEE Trans. Electromagn. Compat. 52(1), 117–127 (2010)

    Google Scholar 

  • Orville, R.E., Idone, V.P.: Lightning Leader characteristics in Thunderstrom research International program (TRIP). J. Geophys. Res. 87, 11177–11192 (1982)

    Article  Google Scholar 

  • Plooster, M.N.: Numerical model of the return stroke of the lightning discharge. Phys. Fluids. 14, 2124–2133 (1971)

    Article  Google Scholar 

  • Price, G.H., Pierce, E.T.: The modeling of channel current in the lightning return stroke. Radio Sci. 12, 381–388 (1977)

    Article  Google Scholar 

  • Rachidi, F., Janischewsky, W.A., Hussein, A.M., Nucci, C.A., Guerrieri, S., Kordi, S.B., Chang, J.S.: Current and electromagnetic field associated with lightning return strokes to tall towers. IEEE Trans. Electromag. Compat. 43(3), 356–367 (2001)

    Article  Google Scholar 

  • Rakov, V.A., Uman, M.A.: Review and evaluation of lightning return stroke models including some aspects of their applications. IEEE Trans. Electromagn. Compat. 40(4), 403–426 (1998)

    Article  Google Scholar 

  • Rakov, V.A., Uman, M.A.: Lightning Physics and Effects. Cambridge University Press, USA (2003)

    Book  Google Scholar 

  • Rakov, V.A., Uman, M.A., Rambo, K.J.: A review of ten years of triggered lightning experiments at Camp Blanding, Florida. Atmos. Res. 76, 503–517 (2005)

    Article  Google Scholar 

  • Rakov, V.A.: Fundamentals of Lightning. CUP (2016)

    Google Scholar 

  • Schonland, B.F.: The lightning discharge. Handb. Phys. 22, 576–628 (1956)

    Google Scholar 

  • Schonland, B.F., Malan, D.J., Collens, H.: Progressive lightning II. Soc. London Ser. A 152, 595–625 (1935)

    Google Scholar 

  • Shumpert, T.H., Honnell, M.A., Lott, G.K.: Measured spectrum amplitude of lightning Sferics in the HF, VHF and UHF bands. IEEE Trans. Electromagn. Compat. 24, 368–372 (1982)

    Article  Google Scholar 

  • Spitzer, L.: Physics of Fully Ionized Gases. Interscience, New York (1961)

    MATH  Google Scholar 

  • Strawe D.F.: Non-linear modelling of lightning return stroke. In: Proceedings of the Federal Aviation Administration/Florida Institute of Technology Workshop on Grounding and Lightning Technology. Report FAA-RD-79.6: 9–15 (1979)

    Google Scholar 

  • Theethayi, N., Cooray, V.: On representation of the lightning return stroke process as a current pulse along a transmission line. IEEE Trans. Power Deliv. 20(2), 823–837 (2005)

    Article  Google Scholar 

  • Thotappillil, A., Uman, M.A.: A lightning return stroke model with height-variable discharge content. J. Geophys. Res. 99, 22773–22780 (1994)

    Google Scholar 

  • Tiller J.A., Uman M.A., Lin Y.T., Brantley R.D., and E.P. Krider E.P.: Electric field statistics for close lightning return strokes near Gainesville, Florida, J. Geophys. Res. 81, 4430–4434 (1976)

    Google Scholar 

  • Uman, M.A.: Lightning return stroke electric and magnetic fields. J. Geophys. Res. 90, 6121–6130 (1985)

    Article  Google Scholar 

  • Uman, M.A., Krider, K.P.: A review of natural lightning: experimental data and modelling. IEEE Trans. Electromagn. Compat. EMC 24, 79–112 (1982)

    Article  Google Scholar 

  • Uman, M.A., Standler, R.B.: Lightning return stroke models. J. Geophys. Res. 85, 1571–1583 (1980)

    Article  Google Scholar 

  • Uman, M.A.: The Art and Science of Lightning Protection. CUP (2008)

    Google Scholar 

  • Uman M.A.: Lightning. McGraw Hill (1969)

    Google Scholar 

  • Uman M.A.: The Lightning Discharge. Academic (1987)

    Google Scholar 

  • Weidman, C.D., Krider, E.P.: Sub microsecond structure of the return stroke waveforms. Geophys. Res. Lett. 7, 955–958 (1980)

    Article  Google Scholar 

  • Weidman C.D., Krider K.P.: The fine structure of lightning return stroke waveforms. J. Geophys. Res. 87, 6239–6247 (1982). Correction, J. Geophys. Res. 87, 7351

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoole, P., Hoole, S. (2022). Lightning Physics, Modeling, and Radiated Electromagnetic Fields. In: Lightning Engineering: Physics, Computer-based Test-bed, Protection of Ground and Airborne Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-94728-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-94728-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-94727-9

  • Online ISBN: 978-3-030-94728-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics