Abstract
The aim of this work is to develop a hybridised approach consisting of the Self-Organising Map (SOM), which is an artificial neural network, and a Genetic Algorithm (GA) to tackle large and complex optimisation problems by decomposition. The approach is tested on the travelling salesman problem (TSP), which is a very important problem in combinatorial optimisation. The SOM clusters the nodes into a specified number of groups. Then, the resulting smaller TSPs within each cluster are solved, and finally, the solutions of the clusters are connected to build a high quality solution for the whole TSP. In the two latter steps, a GA is used. Our approach is examined on some random examples including 100 to 10000 nodes as well as 12 benchmark instances. The results with various numbers of clusters are compared to each other and also to the case of solving the TSP with all nodes and without any clustering. Furthermore, the effect of each component algorithm in the hybridised approach is evaluated by some complementary experiments in which the clustering and the optimisation algorithm are replaced by other methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Der Handlungsreisende - wie er sein soll und was er zu tun hat, um Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften gewiß zu sein - von einem alten Commis-Voyageur. Springer (1832)
Aggarwal, C.C.: Neural Networks and Deep Learning. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94463-0
Alsheddy, A.: Solving the free clustered TSP using a memetic algorithm. Int. J. Adv. Comput. Sci. Appl. 8(8), 404–408 (2017). https://doi.org/10.14569/ijacsa.2017.080852
Applegate, D.L., et al.: Certification of an optimal TSP tour through 85,900 cities. Oper. Res. Lett. 37(1), 11–15 (2009). https://doi.org/10.1016/j.orl.2008.09.006
Bai, Y., Zhang, W., Jin, Z.: An new self-organizing maps strategy for solving the traveling salesman problem. Chaos, Solitons & Fractals 28(4), 1082–1089 (2006). https://doi.org/10.1016/j.chaos.2005.08.114
Bergmann, B., Hommel, G.: Improvements of general multiple test procedures for redundant systems of hypotheses. In: Bauer, P., Hommel, G., Sonnemann, E. (eds.) Multiple Hypothesenprüfung/Multiple Hypotheses Testing. MEDINFO, vol. 70, pp. 100–115. Springer, Heidelberg (1988). https://doi.org/10.1007/978-3-642-52307-6_8
Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary algorithms. Evol. Comput. 4(4), 361–394 (1996). https://doi.org/10.1162/evco.1996.4.4.361
Brocki, Ł, Koržinek, D.: Kohonen self-organizing map for the traveling salesperson problem. In: Jabłoński, R., Turkowski, M., Szewczyk, R. (eds.) Recent Advances in Mechatronics, pp. 116–119. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-73956-2_24
Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper. Res. Soc. Am. 2(4), 393–410 (1954). https://doi.org/10.1287/opre.2.4.393
D’Urso, P., Giovanni, L.D., Massari, R.: Smoothed self-organizing map for robust clustering. Inf. Sci. 512, 381–401 (2020). https://doi.org/10.1016/j.ins.2019.06.038
Faigl, J., Hollinger, G.A.: Self-organizing map for the prize-collecting traveling salesman problem. In: Villmann, T., Schleif, F.-M., Kaden, M., Lange, M. (eds.) Advances in Self-Organizing Maps and Learning Vector Quantization. AISC, vol. 295, pp. 281–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07695-9_27
Fuentes, G.E.A., Gress, E.S.H., Mora, J.C.S.T., Marín, J.M.: Solution to travelling salesman problem by clusters and a modified multi-restart iterated local search metaheuristic. PLoS ONE 13(8), e0201868 (2018). https://doi.org/10.1371/journal.pone.0201868
Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuristics. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5
Grabusts, P., Musatovs, J.: The application of simulated annealing method for solving travelling salesman problem. In: Proceedings of the 4th Global Virtual Conference. Publishing Society, pp. 225–229 (2016). https://doi.org/10.18638/gv.2016.4.1.732
Grice, J.V., Montgomery, D.C.: Design and analysis of experiments. Technometrics 42(2), 208 (2000). https://doi.org/10.2307/1271458
Guttmann-Beck, N., Knaan, E., Stern, M.: Approximation algorithms for not necessarily disjoint clustered TSP. J. Graph Algorithms Appl. 22(4), 555–575 (2018). https://doi.org/10.7155/jgaa.00478
Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms. Wiley, Hoboken (2003). https://doi.org/10.1002/0471671746
Jaradat, A., Matalkeh, B., Diabat, W.: Solving traveling salesman problem using firefly algorithm and k-means clustering. In: 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). IEEE, pp. 586–589 (2019). https://doi.org/10.1109/jeeit.2019.8717463
Jovanovic, R., Tuba, M., Voß, S.: Fixed set search applied to the traveling salesman problem. In: Blesa Aguilera, M.J., Blum, C., Gambini Santos, H., Pinacho-Davidson, P., Godoy del Campo, J. (eds.) HM 2019. LNCS, vol. 11299, pp. 63–77. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05983-5_5
King, B., Barve, S., Ford, A., Jha, R.: Unsupervised clustering of COVID-19 chest X-ray images with a self-organizing feature map. In: 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS). IEEE (2020). https://doi.org/10.1109/mwscas48704.2020.9184493
Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982). https://doi.org/10.1007/bf00337288
Laporte, G., Palekar, U.: Some applications of the clustered travelling salesman problem. J. Oper. Res. Soc. 53(9), 972–976 (2002). https://doi.org/10.1057/palgrave.jors.2601420
Liu, D., Wang, X., Du, J.: A clustering-based evolutionary algorithm for traveling salesman problem. In: 2009 International Conference on Computational Intelligence and Security. IEEE, pp. 118–122 (2009). https://doi.org/10.1109/cis.2009.80
Matai, R., Singh, S., Lal, M.: Traveling salesman problem: an overview of applications, formulations, and solution approaches. In: Davendra, D. (ed.) Traveling Salesman Problem, Theory and Applications. InTech (2010). https://doi.org/10.5772/12909
Potvin, J.Y., Guertin, F.: The clustered traveling salesman problem: a genetic approach. In: Osman, I.H., Kelly, J.P. (eds.) Meta-Heuristics, pp. 619–631. Springer, Boston (1996). https://doi.org/10.1007/978-1-4613-1361-8_37
Rego, C., Gamboa, D., Glover, F., Osterman, C.: Traveling salesman problem heuristics: leading methods, implementations and latest advances. Eur. J. Oper. Res. 211(3), 427–441 (2011). https://doi.org/10.1016/j.ejor.2010.09.010
Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991). https://doi.org/10.1287/ijoc.3.4.376
Schneider, J.J., Bukur, T., Krause, A.: Traveling salesman problem with clustering. J. Stat. Phys. 141(5), 767–784 (2010). https://doi.org/10.1007/s10955-010-0080-z
Suhriani, I.F., Mutawalli, L., Widiami, B.R.A., Chumairoh: Implementation self organizing map for cluster flood disaster risk. In: Proceedings of the International Conference on Mathematics and Islam. SCITEPRESS - Science and Technology Publications, pp. 405–409 (2018). https://doi.org/10.5220/0008522604050409
Taillard, É.D., Helsgaun, K.: POPMUSIC for the travelling salesman problem. Eur. J. Oper. Res. 272(2), 420–429 (2019). https://doi.org/10.1016/j.ejor.2018.06.039
Yu, S., Yang, M., Wei, L., Hu, J.S., Tseng, H.W., Meen, T.H.: Combination of self-organizing map and k-means methods of clustering for online games marketing. Sens. Mater. 32(8), 2801 (2020). https://doi.org/10.18494/sam.2020.2800
Yuanyuan, L., Jing, Z.: An application of ant colony optimization algorithm in TSP. In: 2012 Fifth International Conference on Intelligent Networks and Intelligent Systems. IEEE, pp. 61–64 (2012). https://doi.org/10.1109/icinis.2012.20
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Nourmohammadzadeh, A., Voß, S. (2021). Hybridising Self-Organising Maps with Genetic Algorithms. In: Simos, D.E., Pardalos, P.M., Kotsireas, I.S. (eds) Learning and Intelligent Optimization. LION 2021. Lecture Notes in Computer Science(), vol 12931. Springer, Cham. https://doi.org/10.1007/978-3-030-92121-7_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-92121-7_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92120-0
Online ISBN: 978-3-030-92121-7
eBook Packages: Computer ScienceComputer Science (R0)