Nothing Special   »   [go: up one dir, main page]

Skip to main content

AMBD: Attention Based Multi-Block Deep Learning Model for Warehouse Dwell Time Prediction

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2021 (WISE 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 13081))

Included in the following conference series:

Abstract

Warehouse dwell time consists of working time and waiting time of trucks that have loading tasks in a warehouse. Warehouse dwell time prediction plays a crucial role for improving the truck scheduling strategies as well as the truck drivers’ experiences, and further proliferating the efficiency of warehouse logistics. Queuing theory based time prediction methods mainly focus on some queuing events with regularity to conform. However, the warehouse queuing system has a more complex structure. Specifically, the dwell time of any truck depends on the dwell time of its preceding trucks and the loading ability of warehouse. While warehouse loading ability keeps dynamically changing due to several factors like the capacity of the production line and loading device failures. This greatly increases the difficulty of warehouse dwell time predicting. In this paper, we first put forward the definition of block to represent the loading task statuses of different trucks. On the basis of that, we propose a deep learning based multi-block dwell time prediction model, called AMBD. It incorporates the loading ability of warehouse and the execution process of loading tasks of preceding trucks in the queue. Moreover, to proliferate the precision of warehouse dwell time prediction, we introduce attention mechanism to extract strong correlations among the trucks’ dwell time. Experimental results on real-world steel logistics data demonstrate the efficacy of our proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adhikari, B., Xu, X., Ramakrishnan, N., Prakash, B.A.: Epideep: exploiting embeddings for epidemic forecasting. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) KDD, pp. 577–586. ACM (2019)

    Google Scholar 

  2. Aveklouris, A., Vlasiou, M., Zwart, B.: Bounds and limit theorems for a layered queueing model in electric vehicle charging. Queueing Syst. Theory Appl. 93(1–2), 83–137 (2019)

    Article  MathSciNet  Google Scholar 

  3. Breiman, L.: Better subset regression using the nonnegative garrote. Technometrics 37(4), 373–384 (1995)

    Article  MathSciNet  Google Scholar 

  4. Chaki, S., Doshi, P., Patnaik, P., Bhattacharya, S.: Attentive RNNs for continuous-time emotion prediction in music clips. In: Chhaya, N., Jaidka, K., Healey, J., Ungar, L., Sinha, A.R. (eds.) AAAI, CEUR Workshop Proceedings, vol. 2614, pp. 36–46. CEUR-WS.org (2020)

    Google Scholar 

  5. Chen, Y., Whitt, W.: Algorithms for the upper bound mean waiting time in the GI/GI/1 queue. Queueing Syst. Theory Appl. 94(3–4), 327–356 (2020)

    Article  MathSciNet  Google Scholar 

  6. Cheng, H., et al.: Wide & deep learning for recommender systems. In: Karatzoglou, A., et al. (eds.) DLRS@RecSys, pp. 7–10. ACM (2016)

    Google Scholar 

  7. Dasgupta, S., Osogami, T.: Nonlinear dynamic boltzmann machines for time-series prediction. In: Singh, S.P., Markovitch, S. (eds.) AAAI, pp. 1833–1839. AAAI Press (2017)

    Google Scholar 

  8. Feinberg, E.A., Yang, F.: Optimal pricing for a gi/m/k/n queue with several customer types and holding costs. Queueing Syst. Theory Appl. 82(1–2), 103–120 (2016)

    Article  MathSciNet  Google Scholar 

  9. Fu, K., Meng, F., Ye, J., Wang, Z.: Compacteta: a fast inference system for travel time prediction. In: Gupta, R., Liu, Y., Tang, J., Prakash, B.A. (eds.) KDD, pp. 3337–3345. ACM (2020)

    Google Scholar 

  10. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: a factorization-machine based neural network for CTR prediction. In: Sierra, C. (ed.) IJCAI, pp. 1725–1731. ijcai.org (2017)

    Google Scholar 

  11. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  12. Horváth, G.: Waiting time and queue length analysis of markov-modulated fluid priority queues. Queueing Syst. Theory Appl. 95(1), 69–95 (2020)

    Article  MathSciNet  Google Scholar 

  13. Legros, B.: M/G/1 queue with event-dependent arrival rates. Queueing Syst. Theory Appl. 89(3–4), 269–301 (2018)

    Article  MathSciNet  Google Scholar 

  14. Li, J.: Structured prediction in time series data. In: Singh, S.P., Markovitch, S. (eds.) AAAI, pp. 5042–5043. AAAI Press (2017)

    Google Scholar 

  15. Liu, C., Hoi, S.C.H., Zhao, P., Sun, J.: Online ARIMA algorithms for time series prediction. In: Schuurmans, D., Wellman, M.P. (eds.) AAAI, pp. 1867–1873. AAAI Press (2016)

    Google Scholar 

  16. Shajin, D., Krishnamoorthy, A., Dudin, A.N., Joshua, V.C., Jacob, V.: On a queueing-inventory system with advanced reservation and cancellation for the next K time frames ahead: the case of overbooking. Queueing Syst. Theory Appl. 94(1–2), 3–37 (2020)

    Article  MathSciNet  Google Scholar 

  17. Stanford, D.A., Taylor, P., Ziedins, I.: Waiting time distributions in the accumulating priority queue. Queueing Syst. 77(3), 297–330 (2013). https://doi.org/10.1007/s11134-013-9382-6

    Article  MathSciNet  MATH  Google Scholar 

  18. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  19. Vassøy, B., Ruocco, M., de Souza da Silva, E., Aune, E.: Time is of the essence: a joint hierarchical RNN and point process model for time and item predictions. In: Culpepper, J.S., Moffat, A., Bennett, P.N., Lerman, K. (eds.) WSDM, pp. 591–599. ACM (2019)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  21. Wang, Z., Fu, K., Ye, J.: Learning to estimate the travel time. In: Guo, Y., Farooq, F. (eds.) KDD, pp. 858–866. ACM (2018)

    Google Scholar 

  22. Zhan, D., Weiss, G.: Many-server scaling of the n-system under FCFS-ALIS. Queueing Syst. Theory Appl. 88(1–2), 27–71 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zheng, C., Fan, X., Wang, C., Qi, J.: GMAN: a graph multi-attention network for traffic prediction. In: AAAI, pp. 1234–1241. AAAI Press (2020)

    Google Scholar 

  24. Zhou, X., Shen, Y., Huang, L., Zang, T., Zhu, Y.: Multi-level attention networks for multi-step citywide passenger demands prediction. IEEE Trans. Knowl. Data Eng. 33(5), 2096–2108 (2021)

    Google Scholar 

  25. Zhu, L., et al.: Order fulfillment cycle time estimation for on-demand food delivery. In: Gupta, R., Liu, Y., Tang, J., Prakash, B.A. (eds.) KDD, pp. 2571–2580. ACM (2020)

    Google Scholar 

Download references

Acknowledgments

This research was supported by NSFC (Nos. 62072180, U1911203 and U1811264).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiali Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, X., Zhao, W., Mao, J., Guo, Y., Zhou, A. (2021). AMBD: Attention Based Multi-Block Deep Learning Model for Warehouse Dwell Time Prediction. In: Zhang, W., Zou, L., Maamar, Z., Chen, L. (eds) Web Information Systems Engineering – WISE 2021. WISE 2021. Lecture Notes in Computer Science(), vol 13081. Springer, Cham. https://doi.org/10.1007/978-3-030-91560-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-91560-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-91559-9

  • Online ISBN: 978-3-030-91560-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics