Nothing Special   »   [go: up one dir, main page]

Skip to main content

Two Algorithms for Computing Exact and Approximate Nash Equilibria in Bimatrix Games

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2021)

Abstract

In this paper, we first devise two algorithms to determine whether or not a bimatrix game has a strategically equivalent zero-sum game. If so, we propose an algorithm that computes the strategically equivalent zero-sum game. If a given bimatrix game is not strategically equivalent to a zero-sum game, we then propose an approach to compute a zero-sum game whose saddle-point equilibrium can be mapped to a well-supported approximate Nash equilibrium of the original game. We conduct extensive numerical simulation to establish the efficacy of the two algorithms.

The second author was fully supported by the United States Military Academy and the Army Advanced Civil Schooling (ACS) program. The views expressed in this work are those of the authors and do not reflect the official policy or position of the Department of the Army, Department of Defense, or the U.S. Government.

The third author gratefully acknowledges support from NSF Grant 1565487.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  2. Chen, X., Deng, X., Teng, S.H.: Computing Nash equilibria: approximation and smoothed complexity. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 603–612. IEEE (2006)

    Google Scholar 

  3. Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash equilibria. J. ACM (JACM) 56(3), 14 (2009)

    Article  MathSciNet  Google Scholar 

  4. Choi, W.J., Sayedi, A.: Learning in online advertising. Mark. Sci. 38(4), 584–608 (2019)

    Article  Google Scholar 

  5. Dalessandro, B., Perlich, C., Stitelman, O., Provost, F.: Causally motivated attribution for online advertising. In: Proceedings of the Sixth International Workshop on Data Mining for Online Advertising and Internet Economy, pp. 1–9 (2012)

    Google Scholar 

  6. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MathSciNet  Google Scholar 

  7. Daskalakis, C., Papadimitriou, C.H.: Three-player games are hard. In: Electronic Colloquium on Computational Complexity, vol. 139, pp. 81–87 (2005)

    Google Scholar 

  8. Do, C.T., et al.: Game theory for cyber security and privacy. ACM Comput. Surv. (CSUR) 50(2), 1–37 (2017)

    Article  Google Scholar 

  9. Fearnley, J., Goldberg, P.W., Savani, R., Sørensen, T.B.: Approximate well-supported Nash equilibria below two-thirds. Algorithmica 76(2), 297–319 (2016)

    Article  MathSciNet  Google Scholar 

  10. Gong, J., Liao, J., Wang, J., Qi, Q., Zhang, L.: Reducing the oscillations between overlay routing and traffic engineering by repeated game theory. In: 2013 19th Asia-Pacific Conference on Communications (APCC), pp. 591–596. IEEE (2013)

    Google Scholar 

  11. Heyman, J.L., Gupta, A.: Rank reduction in bimatrix games. arXiv:190400457. Submitted to International Journal of Game Theory

  12. Heyman, J.L.: On the computation of strategically equivalent games. Ph.D. dissertation, The Ohio State University, Columbus (2019). http://rave.ohiolink.edu/etdc/view?acc_num=osu1561984858706805

  13. Jiang, W., Zhang-Shen, R., Rexford, J., Chiang, M.: Cooperative content distribution and traffic engineering in an ISP network. In: Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems, pp. 239–250 (2009)

    Google Scholar 

  14. Kontogiannis, S.C., Spirakis, P.G.: Efficient algorithms for constant well supported approximate equilibria in bimatrix games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 595–606. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_52

    Chapter  Google Scholar 

  15. Kontogiannis, S.C., Spirakis, P.G.: Well supported approximate equilibria in bimatrix games. Algorithmica 57(4), 653–667 (2010)

    Article  MathSciNet  Google Scholar 

  16. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proceedings of the 4th ACM Conference on Electronic Commerce, pp. 36–41. ACM (2003)

    Google Scholar 

  17. Moulin, H., Vial, J.P.: Strategically zero-sum games: the class of games whose completely mixed equilibria cannot be improved upon. Int. J. Game Theory 7(3–4), 201–221 (1978)

    Article  MathSciNet  Google Scholar 

  18. Nash, J.: Non-cooperative games. Ann. Math. 286–295 (1951)

    Google Scholar 

  19. Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the GAMUT: a comprehensive approach to evaluating game-theoretic algorithms. In: AAMAS, vol. 4, pp. 880–887 (2004)

    Google Scholar 

  20. Panagopoulou, P.N., Spirakis, P.G.: Random bimatrix games are asymptotically easy to solve (a simple proof). Theory Comput. Syst. 54(3), 479–490 (2014)

    Article  MathSciNet  Google Scholar 

  21. Shiva, S., Roy, S., Dasgupta, D.: Game theory for cyber security. In: Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research, pp. 1–4 (2010)

    Google Scholar 

  22. Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash equilibria. Internet Math. 5(4), 365–382 (2008)

    Article  MathSciNet  Google Scholar 

  23. Wedderburn, J.H.M.: Lectures on Matrices, vol. 17. American Mathematical Society (1934)

    Google Scholar 

  24. Zhao, Y., Wang, S., Xu, S., Wang, X., Gao, X., Qiao, C.: Load balance vs energy efficiency in traffic engineering: a game theoretical perspective. In: 2013 Proceedings IEEE INFOCOM, pp. 530–534. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzong Pi .

Editor information

Editors and Affiliations

A Some Auxiliary Results on \(\mathcal M_{m\times n}(\mathbb {R})\)

A Some Auxiliary Results on \(\mathcal M_{m\times n}(\mathbb {R})\)

This appendix is based on Appendix A.1.1 of [12].

Theorem 6

For matrix \(M \in \mathbb R^{m\times n}\) with \(\texttt {rank}({M}) = r\). Let \(M_1 = M\), and

$$\begin{aligned} M_{k+1} := M_k - w_k^{-1}M_k\boldsymbol{\mathbf {x}}_k \boldsymbol{\mathbf {y}}_k^\mathsf {T}M_k, \qquad k\in \{1,\dots ,r\}. \end{aligned}$$
(2)

Define rank 1 matrices \(W_k := \boldsymbol{\mathbf {v}}_k \boldsymbol{\mathbf {u}}_k^\mathsf {T}= w_k^{-1}M_k\boldsymbol{\mathbf {x}}_k \boldsymbol{\mathbf {y}}_k^\mathsf {T}M_k\). Then, for any \(j > k\), \(\boldsymbol{\mathbf {v}}_k \not \in \texttt {ColSpan}(M_j)\) and \(\boldsymbol{\mathbf {u}}_k \not \in \texttt {ColSpan}(M_j^\mathsf {T})\).

Proof

By (2), we have \(M_{k+1} = M - \sum _{i=1}^{k}W_i = \sum _{i = k+1}^r W_i\). Then, [23, p. 69] implies \(\texttt {rank}({M_{k+1}}) = \texttt {rank}({M_k}) - 1\). Hence the result is proved.    \(\square \)

Theorem 7

If a matrix \(A \in \mathbb R^{m\times n}\) and \(A \not \in \mathcal M_{m\times n}(\mathbb R)\), then \(\mathcal {WZ}(A) \ne \emptyset \)

Proof

We can write \(A = M + \sum _{i=1}^k \boldsymbol{\mathbf {v}}_i \boldsymbol{\mathbf {u}}_i^\mathsf {T}\), where

  1. (a)

    \(k = \texttt {rank}({A}) - \texttt {rank}({M})\),

  2. (b)

    \(M = \boldsymbol{\mathbf {1}}_m\boldsymbol{\mathbf {u}}_o^\mathsf {T}+ \boldsymbol{\mathbf {v}}_0 \boldsymbol{\mathbf {1}}_n^\mathsf {T}\in \mathcal M_{m\times n}(\mathbb R)\), so \(\texttt {rank}({M}) \le 2\),

  3. (c)

    For any \(i \in \{1, \dots , k\}\), \(\boldsymbol{\mathbf {v}}_i \not \in \texttt {ColSpan}(M)\) and \(\boldsymbol{\mathbf {u}}_i \not \in \texttt {ColSpan}(M^\mathsf {T})\),

  4. (d)

    \(\left\{ \boldsymbol{\mathbf {v}}_i\right\} _{i = 1}^k\) and \(\left\{ \boldsymbol{\mathbf {u}}_i\right\} _{i = 1}^k\) are linearly independent.

Let \(\boldsymbol{\mathbf {w}}_0 = \boldsymbol{\mathbf {1}}_m\) and \(\boldsymbol{\mathbf {z}}_0 = \boldsymbol{\mathbf {1}}_n\), and construct orthogonal vectors such that

$$\begin{aligned}&\boldsymbol{\mathbf {w}}_i = \boldsymbol{\mathbf {v}}_i - \sum _{j=0}^i \frac{\boldsymbol{\mathbf {v}}_i^\mathsf {T}\boldsymbol{\mathbf {w}}_j}{\boldsymbol{\mathbf {w}}_j^\mathsf {T}\boldsymbol{\mathbf {w}}_j}\boldsymbol{\mathbf {w}}_j&\forall i \in \{1,\dots ,k\}\\&\boldsymbol{\mathbf {z}}_i = \boldsymbol{\mathbf {u}}_i - \sum _{j=0}^i \frac{\boldsymbol{\mathbf {u}}_i^\mathsf {T}\boldsymbol{\mathbf {z}}_j}{\boldsymbol{\mathbf {z}}_j^\mathsf {T}\boldsymbol{\mathbf {z}}_j}\boldsymbol{\mathbf {z}}_j&\forall i \in \{1,\dots ,k\}\\&\boldsymbol{\mathbf {1}}_m^\mathsf {T}\boldsymbol{\mathbf {w}}_i = \boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {z}}_i = 0&\forall i \in \{1,\dots ,k\} \\&\boldsymbol{\mathbf {w}}_i^\mathsf {T}\boldsymbol{\mathbf {v}}_j = \boldsymbol{\mathbf {u}}_j^\mathsf {T}\boldsymbol{\mathbf {z}}_i = 0&\forall j < i \\&\boldsymbol{\mathbf {w}}_i^\mathsf {T}\boldsymbol{\mathbf {v}}_i \ne 0 \text { and } \boldsymbol{\mathbf {u}}_i^\mathsf {T}\boldsymbol{\mathbf {z}}_i \ne 0&\forall i \in \{1,\dots ,k\} \end{aligned}$$

After the iteration, we have that

$$\begin{aligned} \boldsymbol{\mathbf {w}}_k^\mathsf {T}A \boldsymbol{\mathbf {z}}_k&= \boldsymbol{\mathbf {w}}_k^\mathsf {T}M \boldsymbol{\mathbf {z}}_k + \boldsymbol{\mathbf {w}}_k^\mathsf {T}\sum _{i=1}^{k} \boldsymbol{\mathbf {v}}_i \boldsymbol{\mathbf {u}}_i^\mathsf {T}\boldsymbol{\mathbf {z}}_k = \boldsymbol{\mathbf {w}}_k^\mathsf {T}M \boldsymbol{\mathbf {z}}_k + \boldsymbol{\mathbf {w}}_k^\mathsf {T}\sum _{i=1}^{k-1} \boldsymbol{\mathbf {v}}_i \boldsymbol{\mathbf {u}}_i^\mathsf {T}\boldsymbol{\mathbf {z}}_k + \boldsymbol{\mathbf {w}}_k^\mathsf {T}\boldsymbol{\mathbf {v}}_k \boldsymbol{\mathbf {u}}_k^\mathsf {T}\boldsymbol{\mathbf {z}}_k \\&= \boldsymbol{\mathbf {w}}_k^\mathsf {T}\boldsymbol{\mathbf {v}}_k \boldsymbol{\mathbf {u}}_k^\mathsf {T}\boldsymbol{\mathbf {z}}_k \ne 0. \end{aligned}$$

The last step is because \( \boldsymbol{\mathbf {w}}_i^\mathsf {T}\boldsymbol{\mathbf {v}}_j = \boldsymbol{\mathbf {u}}_j^\mathsf {T}\boldsymbol{\mathbf {z}}_i = 0 \) for any \(j < i\).    \(\square \)

Lemma 5

For any matrix \(M\in \mathcal {M}_{m\times n}(\mathbb {R})\):

  1. 1.

    If \(\texttt {rank}({M})=2\), then \(\boldsymbol{\mathbf {1}}_m\in \texttt {ColSpan}(M)\) and \(\boldsymbol{\mathbf {1}}_n\in \texttt {ColSpan}(M^\mathsf {T})\). In addition, for all \(\boldsymbol{\mathbf {x}},\boldsymbol{\mathbf {y}}\) such that \(M\boldsymbol{\mathbf {x}}=\boldsymbol{\mathbf {1}}_m\),\(M^\mathsf {T}\boldsymbol{\mathbf {y}}=\boldsymbol{\mathbf {1}}_n\),\(\boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {x}}=0\),\(\boldsymbol{\mathbf {1}}_m^\mathsf {T}\boldsymbol{\mathbf {y}}=0\).

  2. 2.

    If \(\texttt {rank}({M})=1\), then either \(\boldsymbol{\mathbf {1}}_m\in \texttt {ColSpan}(M)\), or \(\boldsymbol{\mathbf {1}}_n\in \texttt {ColSpan}(M^\mathsf {T})\) or both \(\boldsymbol{\mathbf {1}}_m\in \texttt {ColSpan}(M)\) and \(\boldsymbol{\mathbf {1}}_n\in \texttt {ColSpan}(M^\mathsf {T})\).

Proof

For Claim 1, \(\boldsymbol{\mathbf {1}}_m\in \texttt {ColSpan}(M)\) and \(\boldsymbol{\mathbf {1}}_n\in \texttt {ColSpan}(M^\mathsf {T})\) follows directly from \(\texttt {rank}({M})=2\). In addition, \(M\in \mathcal {M}_{m\times n}(\mathbb {R})\) and \(\texttt {rank}({M})=2\) implies that there exists \(\boldsymbol{\mathbf {v}}\ne \boldsymbol{\mathbf {0}}_n\) and \(\boldsymbol{\mathbf {u}}\ne \boldsymbol{\mathbf {0}}_m\) such that \(M=\boldsymbol{\mathbf {1}}_m\boldsymbol{\mathbf {u}}^\mathsf {T}+\boldsymbol{\mathbf {v}}\boldsymbol{\mathbf {1}}_n^\mathsf {T}\). Also since \(\texttt {rank}({M})=2\), we have that for all \(a\in \mathbb {R}\), \(\boldsymbol{\mathbf {v}}\ne a\boldsymbol{\mathbf {1}}_m\) since \(\boldsymbol{\mathbf {v}}\) and \(\boldsymbol{\mathbf {1}}_m\) must be linearly independent. Then, for all \(\boldsymbol{\mathbf {x}}\) such that \(M\boldsymbol{\mathbf {x}}=\boldsymbol{\mathbf {1}}_m\) we have that:

$$\begin{aligned} M\boldsymbol{\mathbf {x}}&=\boldsymbol{\mathbf {1}}_m\boldsymbol{\mathbf {u}}^\mathsf {T}\boldsymbol{\mathbf {x}}+\boldsymbol{\mathbf {v}}\boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {x}}=\boldsymbol{\mathbf {1}}_m=(\boldsymbol{\mathbf {u}}^\mathsf {T}\boldsymbol{\mathbf {x}})\boldsymbol{\mathbf {1}}_m+(\boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {x}})\boldsymbol{\mathbf {v}}=\boldsymbol{\mathbf {1}}_m. \end{aligned}$$

This implies \((\boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {x}})\boldsymbol{\mathbf {v}}=(1-\boldsymbol{\mathbf {u}}^\mathsf {T}\boldsymbol{\mathbf {x}})\boldsymbol{\mathbf {1}}_m\). Further, \(\boldsymbol{\mathbf {v}}\ne a\boldsymbol{\mathbf {1}}_m\) implies that the equation above is satisfied if and only if \(\boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {x}}=0\) and \(\boldsymbol{\mathbf {u}}^\mathsf {T}\boldsymbol{\mathbf {x}}=1\). To prove that for all \(\boldsymbol{\mathbf {y}}\) such that \(M^\mathsf {T}\boldsymbol{\mathbf {y}}=\boldsymbol{\mathbf {1}}_n\), \(\boldsymbol{\mathbf {1}}_m^\mathsf {T}\boldsymbol{\mathbf {y}}=0\) apply the same technique to \(M^\mathsf {T}\).

Claim 2 follows directly from \(\texttt {rank}({M})=1\).    \(\square \)

Lemma 6

For any matrix \(F\in \mathbb {R}^{m\times n}\), if there exists ij such that \(F_{(i)}=\boldsymbol{\mathbf {0}}_n^\mathsf {T}\) and \(F^{(j)}=\boldsymbol{\mathbf {0}}_m\) then \(F\in \mathcal {M}_{m\times n}(\mathbb {R})\) if and only if \(F=\boldsymbol{\mathbf {0}}_{m\times n}\).

Proof

Clearly \(F=\boldsymbol{\mathbf {0}}_{m\times n}\) implies that \(F\in \mathcal {M}_{m\times n}(\mathbb {R})\) and that for all ij \(F_{(i)}=\boldsymbol{\mathbf {0}}_n^\mathsf {T}\) and \(F^{(j)}=\boldsymbol{\mathbf {0}}_m\). Now, consider the forward direction and suppose that \(F\in \mathcal {M}_{m\times n}(\mathbb {R})\). Then from the definition of \(\mathcal {M}_{m\times n}(\mathbb {R})\), we have that \(\texttt {rank}({F})\le 2\). We will show that \(\texttt {rank}({F})=0\). \(F_{(i)}=\boldsymbol{\mathbf {0}}_n^\mathsf {T}\) implies that \(\boldsymbol{\mathbf {1}}_m\notin \texttt {ColSpan}(M)\) and \(F^{(j)}=\boldsymbol{\mathbf {0}}_m\) implies that \(\boldsymbol{\mathbf {1}}_n\notin \texttt {ColSpan}(M^\mathsf {T})\). Then, by Lemma 5 \(\texttt {rank}({F})\ne 1,2\). Therefore, \(\texttt {rank}({F})=0\) and \(F=\boldsymbol{\mathbf {0}}_{m\times n}\).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pi, J., Heyman, J.L., Gupta, A. (2021). Two Algorithms for Computing Exact and Approximate Nash Equilibria in Bimatrix Games. In: Bošanský, B., Gonzalez, C., Rass, S., Sinha, A. (eds) Decision and Game Theory for Security. GameSec 2021. Lecture Notes in Computer Science(), vol 13061. Springer, Cham. https://doi.org/10.1007/978-3-030-90370-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-90370-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-90369-5

  • Online ISBN: 978-3-030-90370-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics