Abstract
In this paper, we first devise two algorithms to determine whether or not a bimatrix game has a strategically equivalent zero-sum game. If so, we propose an algorithm that computes the strategically equivalent zero-sum game. If a given bimatrix game is not strategically equivalent to a zero-sum game, we then propose an approach to compute a zero-sum game whose saddle-point equilibrium can be mapped to a well-supported approximate Nash equilibrium of the original game. We conduct extensive numerical simulation to establish the efficacy of the two algorithms.
The second author was fully supported by the United States Military Academy and the Army Advanced Civil Schooling (ACS) program. The views expressed in this work are those of the authors and do not reflect the official policy or position of the Department of the Army, Department of Defense, or the U.S. Government.
The third author gratefully acknowledges support from NSF Grant 1565487.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Chen, X., Deng, X., Teng, S.H.: Computing Nash equilibria: approximation and smoothed complexity. In: 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp. 603–612. IEEE (2006)
Chen, X., Deng, X., Teng, S.H.: Settling the complexity of computing two-player Nash equilibria. J. ACM (JACM) 56(3), 14 (2009)
Choi, W.J., Sayedi, A.: Learning in online advertising. Mark. Sci. 38(4), 584–608 (2019)
Dalessandro, B., Perlich, C., Stitelman, O., Provost, F.: Causally motivated attribution for online advertising. In: Proceedings of the Sixth International Workshop on Data Mining for Online Advertising and Internet Economy, pp. 1–9 (2012)
Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)
Daskalakis, C., Papadimitriou, C.H.: Three-player games are hard. In: Electronic Colloquium on Computational Complexity, vol. 139, pp. 81–87 (2005)
Do, C.T., et al.: Game theory for cyber security and privacy. ACM Comput. Surv. (CSUR) 50(2), 1–37 (2017)
Fearnley, J., Goldberg, P.W., Savani, R., Sørensen, T.B.: Approximate well-supported Nash equilibria below two-thirds. Algorithmica 76(2), 297–319 (2016)
Gong, J., Liao, J., Wang, J., Qi, Q., Zhang, L.: Reducing the oscillations between overlay routing and traffic engineering by repeated game theory. In: 2013 19th Asia-Pacific Conference on Communications (APCC), pp. 591–596. IEEE (2013)
Heyman, J.L., Gupta, A.: Rank reduction in bimatrix games. arXiv:190400457. Submitted to International Journal of Game Theory
Heyman, J.L.: On the computation of strategically equivalent games. Ph.D. dissertation, The Ohio State University, Columbus (2019). http://rave.ohiolink.edu/etdc/view?acc_num=osu1561984858706805
Jiang, W., Zhang-Shen, R., Rexford, J., Chiang, M.: Cooperative content distribution and traffic engineering in an ISP network. In: Proceedings of the Eleventh International Joint Conference on Measurement and Modeling of Computer Systems, pp. 239–250 (2009)
Kontogiannis, S.C., Spirakis, P.G.: Efficient algorithms for constant well supported approximate equilibria in bimatrix games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 595–606. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_52
Kontogiannis, S.C., Spirakis, P.G.: Well supported approximate equilibria in bimatrix games. Algorithmica 57(4), 653–667 (2010)
Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proceedings of the 4th ACM Conference on Electronic Commerce, pp. 36–41. ACM (2003)
Moulin, H., Vial, J.P.: Strategically zero-sum games: the class of games whose completely mixed equilibria cannot be improved upon. Int. J. Game Theory 7(3–4), 201–221 (1978)
Nash, J.: Non-cooperative games. Ann. Math. 286–295 (1951)
Nudelman, E., Wortman, J., Shoham, Y., Leyton-Brown, K.: Run the GAMUT: a comprehensive approach to evaluating game-theoretic algorithms. In: AAMAS, vol. 4, pp. 880–887 (2004)
Panagopoulou, P.N., Spirakis, P.G.: Random bimatrix games are asymptotically easy to solve (a simple proof). Theory Comput. Syst. 54(3), 479–490 (2014)
Shiva, S., Roy, S., Dasgupta, D.: Game theory for cyber security. In: Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence Research, pp. 1–4 (2010)
Tsaknakis, H., Spirakis, P.G.: An optimization approach for approximate Nash equilibria. Internet Math. 5(4), 365–382 (2008)
Wedderburn, J.H.M.: Lectures on Matrices, vol. 17. American Mathematical Society (1934)
Zhao, Y., Wang, S., Xu, S., Wang, X., Gao, X., Qiao, C.: Load balance vs energy efficiency in traffic engineering: a game theoretical perspective. In: 2013 Proceedings IEEE INFOCOM, pp. 530–534. IEEE (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Some Auxiliary Results on \(\mathcal M_{m\times n}(\mathbb {R})\)
A Some Auxiliary Results on \(\mathcal M_{m\times n}(\mathbb {R})\)
This appendix is based on Appendix A.1.1 of [12].
Theorem 6
For matrix \(M \in \mathbb R^{m\times n}\) with \(\texttt {rank}({M}) = r\). Let \(M_1 = M\), and
Define rank 1 matrices \(W_k := \boldsymbol{\mathbf {v}}_k \boldsymbol{\mathbf {u}}_k^\mathsf {T}= w_k^{-1}M_k\boldsymbol{\mathbf {x}}_k \boldsymbol{\mathbf {y}}_k^\mathsf {T}M_k\). Then, for any \(j > k\), \(\boldsymbol{\mathbf {v}}_k \not \in \texttt {ColSpan}(M_j)\) and \(\boldsymbol{\mathbf {u}}_k \not \in \texttt {ColSpan}(M_j^\mathsf {T})\).
Proof
By (2), we have \(M_{k+1} = M - \sum _{i=1}^{k}W_i = \sum _{i = k+1}^r W_i\). Then, [23, p. 69] implies \(\texttt {rank}({M_{k+1}}) = \texttt {rank}({M_k}) - 1\). Hence the result is proved. \(\square \)
Theorem 7
If a matrix \(A \in \mathbb R^{m\times n}\) and \(A \not \in \mathcal M_{m\times n}(\mathbb R)\), then \(\mathcal {WZ}(A) \ne \emptyset \)
Proof
We can write \(A = M + \sum _{i=1}^k \boldsymbol{\mathbf {v}}_i \boldsymbol{\mathbf {u}}_i^\mathsf {T}\), where
-
(a)
\(k = \texttt {rank}({A}) - \texttt {rank}({M})\),
-
(b)
\(M = \boldsymbol{\mathbf {1}}_m\boldsymbol{\mathbf {u}}_o^\mathsf {T}+ \boldsymbol{\mathbf {v}}_0 \boldsymbol{\mathbf {1}}_n^\mathsf {T}\in \mathcal M_{m\times n}(\mathbb R)\), so \(\texttt {rank}({M}) \le 2\),
-
(c)
For any \(i \in \{1, \dots , k\}\), \(\boldsymbol{\mathbf {v}}_i \not \in \texttt {ColSpan}(M)\) and \(\boldsymbol{\mathbf {u}}_i \not \in \texttt {ColSpan}(M^\mathsf {T})\),
-
(d)
\(\left\{ \boldsymbol{\mathbf {v}}_i\right\} _{i = 1}^k\) and \(\left\{ \boldsymbol{\mathbf {u}}_i\right\} _{i = 1}^k\) are linearly independent.
Let \(\boldsymbol{\mathbf {w}}_0 = \boldsymbol{\mathbf {1}}_m\) and \(\boldsymbol{\mathbf {z}}_0 = \boldsymbol{\mathbf {1}}_n\), and construct orthogonal vectors such that
After the iteration, we have that
The last step is because \( \boldsymbol{\mathbf {w}}_i^\mathsf {T}\boldsymbol{\mathbf {v}}_j = \boldsymbol{\mathbf {u}}_j^\mathsf {T}\boldsymbol{\mathbf {z}}_i = 0 \) for any \(j < i\). \(\square \)
Lemma 5
For any matrix \(M\in \mathcal {M}_{m\times n}(\mathbb {R})\):
-
1.
If \(\texttt {rank}({M})=2\), then \(\boldsymbol{\mathbf {1}}_m\in \texttt {ColSpan}(M)\) and \(\boldsymbol{\mathbf {1}}_n\in \texttt {ColSpan}(M^\mathsf {T})\). In addition, for all \(\boldsymbol{\mathbf {x}},\boldsymbol{\mathbf {y}}\) such that \(M\boldsymbol{\mathbf {x}}=\boldsymbol{\mathbf {1}}_m\),\(M^\mathsf {T}\boldsymbol{\mathbf {y}}=\boldsymbol{\mathbf {1}}_n\),\(\boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {x}}=0\),\(\boldsymbol{\mathbf {1}}_m^\mathsf {T}\boldsymbol{\mathbf {y}}=0\).
-
2.
If \(\texttt {rank}({M})=1\), then either \(\boldsymbol{\mathbf {1}}_m\in \texttt {ColSpan}(M)\), or \(\boldsymbol{\mathbf {1}}_n\in \texttt {ColSpan}(M^\mathsf {T})\) or both \(\boldsymbol{\mathbf {1}}_m\in \texttt {ColSpan}(M)\) and \(\boldsymbol{\mathbf {1}}_n\in \texttt {ColSpan}(M^\mathsf {T})\).
Proof
For Claim 1, \(\boldsymbol{\mathbf {1}}_m\in \texttt {ColSpan}(M)\) and \(\boldsymbol{\mathbf {1}}_n\in \texttt {ColSpan}(M^\mathsf {T})\) follows directly from \(\texttt {rank}({M})=2\). In addition, \(M\in \mathcal {M}_{m\times n}(\mathbb {R})\) and \(\texttt {rank}({M})=2\) implies that there exists \(\boldsymbol{\mathbf {v}}\ne \boldsymbol{\mathbf {0}}_n\) and \(\boldsymbol{\mathbf {u}}\ne \boldsymbol{\mathbf {0}}_m\) such that \(M=\boldsymbol{\mathbf {1}}_m\boldsymbol{\mathbf {u}}^\mathsf {T}+\boldsymbol{\mathbf {v}}\boldsymbol{\mathbf {1}}_n^\mathsf {T}\). Also since \(\texttt {rank}({M})=2\), we have that for all \(a\in \mathbb {R}\), \(\boldsymbol{\mathbf {v}}\ne a\boldsymbol{\mathbf {1}}_m\) since \(\boldsymbol{\mathbf {v}}\) and \(\boldsymbol{\mathbf {1}}_m\) must be linearly independent. Then, for all \(\boldsymbol{\mathbf {x}}\) such that \(M\boldsymbol{\mathbf {x}}=\boldsymbol{\mathbf {1}}_m\) we have that:
This implies \((\boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {x}})\boldsymbol{\mathbf {v}}=(1-\boldsymbol{\mathbf {u}}^\mathsf {T}\boldsymbol{\mathbf {x}})\boldsymbol{\mathbf {1}}_m\). Further, \(\boldsymbol{\mathbf {v}}\ne a\boldsymbol{\mathbf {1}}_m\) implies that the equation above is satisfied if and only if \(\boldsymbol{\mathbf {1}}_n^\mathsf {T}\boldsymbol{\mathbf {x}}=0\) and \(\boldsymbol{\mathbf {u}}^\mathsf {T}\boldsymbol{\mathbf {x}}=1\). To prove that for all \(\boldsymbol{\mathbf {y}}\) such that \(M^\mathsf {T}\boldsymbol{\mathbf {y}}=\boldsymbol{\mathbf {1}}_n\), \(\boldsymbol{\mathbf {1}}_m^\mathsf {T}\boldsymbol{\mathbf {y}}=0\) apply the same technique to \(M^\mathsf {T}\).
Claim 2 follows directly from \(\texttt {rank}({M})=1\). \(\square \)
Lemma 6
For any matrix \(F\in \mathbb {R}^{m\times n}\), if there exists i, j such that \(F_{(i)}=\boldsymbol{\mathbf {0}}_n^\mathsf {T}\) and \(F^{(j)}=\boldsymbol{\mathbf {0}}_m\) then \(F\in \mathcal {M}_{m\times n}(\mathbb {R})\) if and only if \(F=\boldsymbol{\mathbf {0}}_{m\times n}\).
Proof
Clearly \(F=\boldsymbol{\mathbf {0}}_{m\times n}\) implies that \(F\in \mathcal {M}_{m\times n}(\mathbb {R})\) and that for all i, j \(F_{(i)}=\boldsymbol{\mathbf {0}}_n^\mathsf {T}\) and \(F^{(j)}=\boldsymbol{\mathbf {0}}_m\). Now, consider the forward direction and suppose that \(F\in \mathcal {M}_{m\times n}(\mathbb {R})\). Then from the definition of \(\mathcal {M}_{m\times n}(\mathbb {R})\), we have that \(\texttt {rank}({F})\le 2\). We will show that \(\texttt {rank}({F})=0\). \(F_{(i)}=\boldsymbol{\mathbf {0}}_n^\mathsf {T}\) implies that \(\boldsymbol{\mathbf {1}}_m\notin \texttt {ColSpan}(M)\) and \(F^{(j)}=\boldsymbol{\mathbf {0}}_m\) implies that \(\boldsymbol{\mathbf {1}}_n\notin \texttt {ColSpan}(M^\mathsf {T})\). Then, by Lemma 5 \(\texttt {rank}({F})\ne 1,2\). Therefore, \(\texttt {rank}({F})=0\) and \(F=\boldsymbol{\mathbf {0}}_{m\times n}\). \(\square \)
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Pi, J., Heyman, J.L., Gupta, A. (2021). Two Algorithms for Computing Exact and Approximate Nash Equilibria in Bimatrix Games. In: Bošanský, B., Gonzalez, C., Rass, S., Sinha, A. (eds) Decision and Game Theory for Security. GameSec 2021. Lecture Notes in Computer Science(), vol 13061. Springer, Cham. https://doi.org/10.1007/978-3-030-90370-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-90370-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-90369-5
Online ISBN: 978-3-030-90370-1
eBook Packages: Computer ScienceComputer Science (R0)