Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-scale Two-Way Deblurring Network for Non-uniform Single Image Deblurring

  • Conference paper
  • First Online:
Mobile Multimedia Communications (MobiMedia 2021)

Abstract

We propose a new and effective image deblurring network based on deep learning. The motivation of this work is based on traditional algorithms and deep learning which take an easy-to-difficult approach to image deblurring. In traditional algorithms, a rough blur kernel is obtained first, and then a precise blur kernel is gradually refined. In deep learning, the pyramid structure is adopted to restore clear images from easy to difficult. We hope to recover the clear image by two-way approximation. One network recovers the roughly clear image from the blurred image, and the other network recovers part of the structural information from the blank image, and finally the two networks are added together to obtain the clear image. Experiments show that since we decomposed the original deblurring task into two different tasks, the network performance has been effectively improved. Compared with other latest networks, our network can get clearer images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. 27, 1–10 (2008)

    Google Scholar 

  2. Cho, S., Lee, S.: Fast Motion Deblurring. ACM Trans. Graph. 28, 1–8 (2009)

    Article  Google Scholar 

  3. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25, 787–794 (2006)

    Article  Google Scholar 

  4. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 157–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_12

    Chapter  Google Scholar 

  5. Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_3

    Chapter  Google Scholar 

  6. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: CVPR (2013)

    Google Scholar 

  7. J. Pan, Z. Hu, Z. Su, Yang, M.H.: L0-regularized intensity and gradient prior for deblurring text images and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 39(2), 342C355 (2017)

    Google Scholar 

  8. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: CVPR (2016)

    Google Scholar 

  9. Pan, J., Hu, Z., Su, Z., Yang, M.-H.: Deblurring face images with exemplars. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 47–62. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_4

    Chapter  Google Scholar 

  10. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR (2017)

    Google Scholar 

  11. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: CVPR (2018)

    Google Scholar 

  12. Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: CVPR (2019)

    Google Scholar 

  13. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: CVPR (2019)

    Google Scholar 

  14. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: CVPR (2018)

    Google Scholar 

  15. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (Ordersof-Magnitude) faster and better. In: ICCV (2019)

    Google Scholar 

  16. Aljadaany, R., Pal, D.K., Savvides, M.: Douglas-Rachford networks: learning both the image prior and data fidelity terms for blind image deconvolution. In: CVPR (2019)

    Google Scholar 

  17. Zhang, K., Luo, W., Zhong, Y., et al.: Deblurring by realistic blurring. arXiv (2020)

    Google Scholar 

  18. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

  19. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14

    Chapter  Google Scholar 

  20. Schuler, C.J., Hirsch, M., Harmeling, S., Scholkopf, B.: Learning to deblur. TPAMI 38(7), 1439–1451 (2016)

    Article  Google Scholar 

  21. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: CVPR (2015)

    Google Scholar 

  22. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS, pp. 249–256 (2010)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600612 (2004)

    Article  Google Scholar 

  24. Bahat, Y., Efrat, N., Irani, M.: Non-uniform Blind Deblurring by Reblurring. In: ICCV (2017)

    Google Scholar 

  25. Cai, J., Zuo, W., Zhang, L.: Dark and bright channel prior embedded network for dynamic scene deblurring. IEEE Trans. Image Process. 29, 6885–6897 (2020)

    Article  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by National Natural Science Foundation of China (No. 61801398), The Young Scholars Reserve Talents program of Xihua University and The program for Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province (No. QCCK2019-005) and The Innovation and Entrepreneurship Project of Xihua Cup (No. 2021055) and The Talent plan of Xihua College of Xihua University (No. 020200107).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Z., Luo, B., Xu, L., Li, S., Xiao, K., Pei, Z. (2021). Multi-scale Two-Way Deblurring Network for Non-uniform Single Image Deblurring. In: Xiong, J., Wu, S., Peng, C., Tian, Y. (eds) Mobile Multimedia Communications. MobiMedia 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 394. Springer, Cham. https://doi.org/10.1007/978-3-030-89814-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89814-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89813-7

  • Online ISBN: 978-3-030-89814-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics