Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stand up Indulgent Gathering

  • Conference paper
  • First Online:
Algorithms for Sensor Systems (ALGOSENSORS 2021)

Abstract

We consider a swarm of mobile robots evolving in a bidimensional Euclidean space. We study the stronger variant of crash-tolerant gathering: if no robot crashes, robots have to meet at the same arbitrary location, not known beforehand, in finite time; if one or several robots crash at the same location, the remaining correct robots gather at the crash location to rescue them. Motivated by impossibility results in the semi-synchronous setting, we present the first solution to the problem for the fully synchronous setting that operates in the vanilla Look-Compute-Move model with no additional hypotheses: robots are oblivious, disoriented, have no multiplicity detection capacity, and may start from arbitrary positions (including those with multiplicity points). We furthermore show that robots gather in a time that is proportional to the initial maximum distance between robots.

This work was partially funded by the ANR project SAPPORO, ref. 2019-CE25-0005-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A configuration is bivalent if all robots are evenly spread on exactly two distinct locations.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)

    Article  MathSciNet  Google Scholar 

  2. Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering without multiplicity detection: a certified algorithm. Theory Comput. Syst. 63(2), 200–218 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 149–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15612-5_14

    Chapter  Google Scholar 

  4. Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: Proceedings of 33rd IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 337–346, July 2013

    Google Scholar 

  5. Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent rendezvous. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 45–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_4

    Chapter  Google Scholar 

  6. Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_22

    Chapter  MATH  Google Scholar 

  7. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)

    Article  MathSciNet  Google Scholar 

  8. Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115(3), 447–452 (2015)

    Article  MathSciNet  Google Scholar 

  9. Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219_4

    Chapter  Google Scholar 

  10. Défago, X., Potop-Butucaru, M., Parvédy, P.R.: Self-stabilizing gathering of mobile robots under crash or byzantine faults. Distrib. Comput. 33(5), 393–421 (2020)

    Article  MathSciNet  Google Scholar 

  11. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)

    Book  Google Scholar 

  12. Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities-Current Research in Moving and Computing. Lecture Notes in Computer Science, vol. 11340. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-11072-7

    Book  Google Scholar 

  13. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)

    Article  MathSciNet  Google Scholar 

  14. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Bramas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bramas, Q., Lamani, A., Tixeuil, S. (2021). Stand up Indulgent Gathering. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2021. Lecture Notes in Computer Science(), vol 12961. Springer, Cham. https://doi.org/10.1007/978-3-030-89240-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-89240-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-89239-5

  • Online ISBN: 978-3-030-89240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics