Abstract
We consider a swarm of mobile robots evolving in a bidimensional Euclidean space. We study the stronger variant of crash-tolerant gathering: if no robot crashes, robots have to meet at the same arbitrary location, not known beforehand, in finite time; if one or several robots crash at the same location, the remaining correct robots gather at the crash location to rescue them. Motivated by impossibility results in the semi-synchronous setting, we present the first solution to the problem for the fully synchronous setting that operates in the vanilla Look-Compute-Move model with no additional hypotheses: robots are oblivious, disoriented, have no multiplicity detection capacity, and may start from arbitrary positions (including those with multiplicity points). We furthermore show that robots gather in a time that is proportional to the initial maximum distance between robots.
This work was partially funded by the ANR project SAPPORO, ref. 2019-CE25-0005-1.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A configuration is bivalent if all robots are evenly spread on exactly two distinct locations.
References
Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36(1), 56–82 (2006)
Balabonski, T., Delga, A., Rieg, L., Tixeuil, S., Urbain, X.: Synchronous gathering without multiplicity detection: a certified algorithm. Theory Comput. Syst. 63(2), 200–218 (2019)
Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement. In: Rahman, M.S., Tomita, E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 149–160. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15612-5_14
Bouzid, Z., Das, S., Tixeuil, S.: Gathering of mobile robots tolerating multiple crash faults. In: Proceedings of 33rd IEEE International Conference on Distributed Computing Systems (ICDCS), pp. 337–346, July 2013
Bramas, Q., Lamani, A., Tixeuil, S.: Stand up indulgent rendezvous. In: Devismes, S., Mittal, N. (eds.) SSS 2020. LNCS, vol. 12514, pp. 45–59. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64348-5_4
Bramas, Q., Tixeuil, S.: Wait-free gathering without chirality. In: Scheideler, C. (ed.) SIROCCO 2014. LNCS, vol. 9439, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_22
Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34(6), 1516–1528 (2005)
Courtieu, P., Rieg, L., Tixeuil, S., Urbain, X.: Impossibility of gathering, a certification. Inf. Process. Lett. 115(3), 447–452 (2015)
Défago, X., Gradinariu, M., Messika, S., Raipin-Parvédy, P.: Fault-tolerant and self-stabilizing mobile robots gathering. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 46–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11864219_4
Défago, X., Potop-Butucaru, M., Parvédy, P.R.: Self-stabilizing gathering of mobile robots under crash or byzantine faults. Distrib. Comput. 33(5), 393–421 (2020)
Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
Flocchini, P., Prencipe, G., Santoro, N. (eds.): Distributed Computing by Mobile Entities-Current Research in Moving and Computing. Lecture Notes in Computer Science, vol. 11340. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-11072-7
Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384(2–3), 222–231 (2007)
Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bramas, Q., Lamani, A., Tixeuil, S. (2021). Stand up Indulgent Gathering. In: Gąsieniec, L., Klasing, R., Radzik, T. (eds) Algorithms for Sensor Systems. ALGOSENSORS 2021. Lecture Notes in Computer Science(), vol 12961. Springer, Cham. https://doi.org/10.1007/978-3-030-89240-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-89240-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-89239-5
Online ISBN: 978-3-030-89240-1
eBook Packages: Computer ScienceComputer Science (R0)