Abstract
We introduce a type of weighted modal logic with explicit weights both in the language and in the models. The framework has its applications in epistemic logic for reasoning about agents’ knowledge based on their capability, and in deontic logic for agents’ choices based on their deontic capability or utilities. We make use of weighted Kripke models with the weights understood epistemically as a similarity measure between states and deontically as a measure of expected utilities. We present sound and complete axiomatizations for the logics, and discuss variants and possible extensions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: ‘Knowable’ as ‘known after an announcement’. RSL 1(3), 305–334 (2008)
Broersen, J.: Deontic epistemic STIT logic distinguishing modes of mens rea. J. Appl. Log. 9(2), 137–152 (2011)
Carmo, J., Jones, A.J.: Deontic logic and contrary-to-duties. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 265–343. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-010-0387-2_4
Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric. Theoret. Comput. Sci. 410(24–25), 2365–2376 (2009)
Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)
Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13(4), 516–520 (1972)
Goble, L.F.: Grades of modality. Logique et Analyse 13, 323–334 (1970)
Governatori, G., Rotolo, A.: Logic of violations: a gentzen system for reasoning with contrary-to-duty obligations. Australas. J. Logic 4 (2006)
Hansen, M., Larsen, K.G., Mardare, R., Pedersen, M.R.: Reasoning about bounds in weighted transition systems. LMCS 14, 1–32 (2018)
Hansson, B.: An analysis of some deontic logics. Nous, 373–398 (1969)
Hansson, S.O.: Preference-based deontic logic (PDL). J. Philos. Log. 19(1), 75–93 (1990)
Herzig, A., Lorini, E.: A dynamic logic of agency I: STIT, capabilities and powers. J. Logic Lang. Inform. 19(1), 89–121 (2010)
Hilpinen, R., McNamara, P.: Deontic logic: a historical survey and introduction. In: Handbook of Deontic Logic and Normative Systems, vol. 1, pp. 3–136. College Publications, London (2013)
Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of Two Notions. Cornell University Press, Ithaca (1962)
van der Hoek, W., Meyer, J.-J.C.: Graded modalities in epistemic logic. In: Nerode, A., Taitslin, M. (eds.) LFCS 1992. LNCS, vol. 620, pp. 503–514. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023902
Horty, J., Pacuit, E.: Action types in STIT semantics. RSL 10(4), 617–637 (2017)
Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)
Larsen, K.G., Mardare, R.: Complete proof systems for weighted modal logic. Theoret. Comput. Sci. 546(12), 164–175 (2014)
Lewis, D.: Counterfactuals. Blackwell Publishers Inc., Malden (1973, 2001 reprint)
Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, New York (1995)
Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Moses, Y. (ed.) TARK, pp. 95–105. Morgan Kaufmann, San Francisco (1992)
Naumov, P., Tao, J.: Logic of confidence. Synthese 192, 1821–1838 (2015)
Parent, X.: Maximality vs. optimality in dyadic deontic logic. J. Philos. Logic 43(6), 1101–1128 (2014)
Patrick, B., de Rijke, M., Venema, Y.: Modal Logic. Cambridge (2001)
Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for modal logic. In: Kanger, S. (ed.) Proceedings of the Third Scandinavian Logic Symposium, pp. 110–143. Elsevier (1975)
Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley Longman Publishing Co., Inc., Boston (2005)
van der Torre, L.: Reasoning about obligations: defeasibility in preference-based deontic logic. Ph.D. thesis, Erasmus Universiteit Rotterdam (1997)
Van Benthem, J., Grossi, D., Liu, F.: Priority structures in deontic logic. Theoria 80(2), 116–152 (2014)
Wáng, Y.N., Ågotnes, T.: Simpler completeness proofs for modal logics with intersection. In: Proc. DaLi (2020)
Acknowledgments
We would like to thank the two referees of LORI 2021 for their valuable remarks and comments. Huimin Dong acknowledges funding support by the National Social Science Fund of China (20CZX051) and Yì N. Wáng acknowledges funding support by the National Social Science Fund of China (18ZDA290, 20&ZD047).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dong, H., Li, X., Wáng, Y.N. (2021). Weighted Modal Logic in Epistemic and Deontic Contexts. In: Ghosh, S., Icard, T. (eds) Logic, Rationality, and Interaction. LORI 2021. Lecture Notes in Computer Science(), vol 13039. Springer, Cham. https://doi.org/10.1007/978-3-030-88708-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-88708-7_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88707-0
Online ISBN: 978-3-030-88708-7
eBook Packages: Religion and PhilosophyPhilosophy and Religion (R0)