Nothing Special   »   [go: up one dir, main page]

Skip to main content

Weighted Modal Logic in Epistemic and Deontic Contexts

  • Conference paper
  • First Online:
Logic, Rationality, and Interaction (LORI 2021)

Abstract

We introduce a type of weighted modal logic with explicit weights both in the language and in the models. The framework has its applications in epistemic logic for reasoning about agents’ knowledge based on their capability, and in deontic logic for agents’ choices based on their deontic capability or utilities. We make use of weighted Kripke models with the weights understood epistemically as a similarity measure between states and deontically as a measure of expected utilities. We present sound and complete axiomatizations for the logics, and discuss variants and possible extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: ‘Knowable’ as ‘known after an announcement’. RSL 1(3), 305–334 (2008)

    Google Scholar 

  2. Broersen, J.: Deontic epistemic STIT logic distinguishing modes of mens rea. J. Appl. Log. 9(2), 137–152 (2011)

    Article  Google Scholar 

  3. Carmo, J., Jones, A.J.: Deontic logic and contrary-to-duties. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, pp. 265–343. Springer, Dordrecht (2002). https://doi.org/10.1007/978-94-010-0387-2_4

    Chapter  Google Scholar 

  4. Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric. Theoret. Comput. Sci. 410(24–25), 2365–2376 (2009)

    Article  Google Scholar 

  5. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge. The MIT Press, Cambridge (1995)

    Google Scholar 

  6. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13(4), 516–520 (1972)

    Google Scholar 

  7. Goble, L.F.: Grades of modality. Logique et Analyse 13, 323–334 (1970)

    Google Scholar 

  8. Governatori, G., Rotolo, A.: Logic of violations: a gentzen system for reasoning with contrary-to-duty obligations. Australas. J. Logic 4 (2006)

    Google Scholar 

  9. Hansen, M., Larsen, K.G., Mardare, R., Pedersen, M.R.: Reasoning about bounds in weighted transition systems. LMCS 14, 1–32 (2018)

    Google Scholar 

  10. Hansson, B.: An analysis of some deontic logics. Nous, 373–398 (1969)

    Google Scholar 

  11. Hansson, S.O.: Preference-based deontic logic (PDL). J. Philos. Log. 19(1), 75–93 (1990)

    Article  Google Scholar 

  12. Herzig, A., Lorini, E.: A dynamic logic of agency I: STIT, capabilities and powers. J. Logic Lang. Inform. 19(1), 89–121 (2010)

    Article  Google Scholar 

  13. Hilpinen, R., McNamara, P.: Deontic logic: a historical survey and introduction. In: Handbook of Deontic Logic and Normative Systems, vol. 1, pp. 3–136. College Publications, London (2013)

    Google Scholar 

  14. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of Two Notions. Cornell University Press, Ithaca (1962)

    Google Scholar 

  15. van der Hoek, W., Meyer, J.-J.C.: Graded modalities in epistemic logic. In: Nerode, A., Taitslin, M. (eds.) LFCS 1992. LNCS, vol. 620, pp. 503–514. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023902

    Chapter  Google Scholar 

  16. Horty, J., Pacuit, E.: Action types in STIT semantics. RSL 10(4), 617–637 (2017)

    Google Scholar 

  17. Horty, J.F.: Agency and Deontic Logic. Oxford University Press, Oxford (2001)

    Book  Google Scholar 

  18. Larsen, K.G., Mardare, R.: Complete proof systems for weighted modal logic. Theoret. Comput. Sci. 546(12), 164–175 (2014)

    Article  Google Scholar 

  19. Lewis, D.: Counterfactuals. Blackwell Publishers Inc., Malden (1973, 2001 reprint)

    Google Scholar 

  20. Meyer, J.J.C., van der Hoek, W.: Epistemic Logic for AI and Computer Science. Cambridge University Press, New York (1995)

    Google Scholar 

  21. Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Moses, Y. (ed.) TARK, pp. 95–105. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  22. Naumov, P., Tao, J.: Logic of confidence. Synthese 192, 1821–1838 (2015)

    Article  Google Scholar 

  23. Parent, X.: Maximality vs. optimality in dyadic deontic logic. J. Philos. Logic 43(6), 1101–1128 (2014)

    Article  Google Scholar 

  24. Patrick, B., de Rijke, M., Venema, Y.: Modal Logic. Cambridge (2001)

    Google Scholar 

  25. Sahlqvist, H.: Completeness and correspondence in the first and second order semantics for modal logic. In: Kanger, S. (ed.) Proceedings of the Third Scandinavian Logic Symposium, pp. 110–143. Elsevier (1975)

    Google Scholar 

  26. Tan, P., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley Longman Publishing Co., Inc., Boston (2005)

    Google Scholar 

  27. van der Torre, L.: Reasoning about obligations: defeasibility in preference-based deontic logic. Ph.D. thesis, Erasmus Universiteit Rotterdam (1997)

    Google Scholar 

  28. Van Benthem, J., Grossi, D., Liu, F.: Priority structures in deontic logic. Theoria 80(2), 116–152 (2014)

    Article  Google Scholar 

  29. Wáng, Y.N., Ågotnes, T.: Simpler completeness proofs for modal logics with intersection. In: Proc. DaLi (2020)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the two referees of LORI 2021 for their valuable remarks and comments. Huimin Dong acknowledges funding support by the National Social Science Fund of China (20CZX051) and Yì N. Wáng acknowledges funding support by the National Social Science Fund of China (18ZDA290, 20&ZD047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yì N. Wáng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, H., Li, X., Wáng, Y.N. (2021). Weighted Modal Logic in Epistemic and Deontic Contexts. In: Ghosh, S., Icard, T. (eds) Logic, Rationality, and Interaction. LORI 2021. Lecture Notes in Computer Science(), vol 13039. Springer, Cham. https://doi.org/10.1007/978-3-030-88708-7_6

Download citation

Publish with us

Policies and ethics