Abstract
Breast cancer screening is an efficient method to detect breast lesions early. The common screening techniques are tomosynthesis and mammography images. However, the traditional manual diagnosis requires an intense workload for pathologists, and hence is prone to diagnostic errors. Thus, the aim of this study was to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images. Based on deep learning the Mask-CNN (RoIAlign) method was developed to automate RoI segmentation. Then feature extraction, selection and classification were carried out by the DenseNet architecture. Finally, the precision and accuracy of the model was evaluated by the AUC, accuracy and precision metrics. To summarize, the findings of this study show that the methodology may improve the diagnosis and efficiency in automatic tumor localization through medical image classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ferlay, J., et al.: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer. 136(5), E359–E386 (2015)
Ragab, D.A., Sharkas, M., Marshall, S., Ren, J.: Breast cancer detection using deep convolutional neural networks and support vector machines. Peer J. 7, e6201 (2019)
Shieh, S.H., Hsieh, V.C.R., Liu, S.H., Chien, C.R., Lin, C.C., Wu, T.N.: Delayed time from first medical visit to diagnosis for breast cancer patients in Taiwan. J. Formos. Med. Assoc. 113(10), 696–703 (2014)
Nahid, A.A., Kong, Y.: Involvement of machine learning for breast cancer image classification: a survey. Comput. Math. Methods Med. 2017, 29 (2017). https://doi.org/10.1155/2017/3781951
Bardou, D., Zhang, K., Ahmad, S.M.: Classification of breast cancer based on histology images using convolutional neural networks. IEEE Access 6, 24680–24693 (2018)
Skandalakis, J.E.: Embryology and anatomy of the breast. In: Shiffman, M. (eds) Breast Augmentation, pp. 3–24. Springer, Berlin, Heidelberg (2009). https://doi.org/10.1007/978-3-540-78948-2_1
Huang, Y.L., Chen, D.R., Lin, Y.C.: 3D Contouring for Breast Tumor in Sonography. arXiv preprint arXiv:1901.09407 (2019)
Al Rahhal, M.M.: Breast cancer classification in histopathological images using convolutional neural network. Int. J. Adv. Comput. Sci. Appl. 9(3), 64–68 (2018)
Lim, C.N., Suliong, C., Rao, C.V., et al.: Recent advances in breast cancer diagnosis entering an era of precision medicine. Borneo J. Med. Sci. (BJMS) 13(1), 3–9 (2019)
Karthiga, R., Narasimhan, K.: Automated diagnosis of breast cancer using wavelet based entropy features. In: Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp. 274–279. IEEE, Coimbatore, India (2018). https://doi.org/10.1109/ICECA.2018.8474739.
Han, Z., Wei, B., Zheng, Y., Yin, Y., Li, K., Li, S.: Breast cancer multi-classification from histopathological images with structured deep learning model. Sci. Rep. 7(1), 1–10 (2017)
Xie, J., Liu, R., Luttrell IV, J., Zhang, C.: Deep learning based analysis of histopathological images of breast cancer. Front. Gene. 10(80), 19 (2019). https://doi.org/10.3389/fgene.2019.00080
Toğaçar, M., Özkurt, K.B., Ergen, B., Cömert, Z.: BreastNet: a novel convolutional neural network model through histopathological images for the diagnosis of breast cancer. Physica A: Stat. Mech. App. 545,123592 (2020)
Pan, Y., et al.: Brain tumor grading based on neural networks and convolutional neural networks. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 699–702. IEEE, Milan, Italy (2015)
Camacho-Piedra, C., Espíndola-Zarazúa, V.: Actualización de la nomenclatura BI-RADS® por mastografía y ultrasonido. Anales de Radiología, (México). 17(2), 100–108 (2018)
Huang, Y., Han, L., Dou, H., et al.: Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images. BioMed. Eng. OnLine 18, 8 (2019). https://doi.org/10.1186/s12938-019-0626-5
Liberman, L., Menell, J.H.: Breast imaging reporting and data system (BI-RADS). Radiol. Clin. 40(3), 409–430 (2002)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708. IEEE, Honolulu, Hawaii (2017)
Kerlikowske, K., et al.: Performance of screening mammography among women with and without a first-degree relative with breast cancer. Ann. Internal Med. 133(11), 855–863 (2000)
Cao, Z., Duan, L., Yang, G., Yue, T., Chen, Q.: An experimental study on breast lesion detection and classification from ultrasound images using deep learning architec-tures. BMC Med. Imaging, 19(51), 9 (2019). https://doi.org/10.1186/s12880-019-0349-x
Duggento, A., et al.: An Ad Hoc random initialization deep neural network architecture for discriminating malignant breast cancer lesions in mammographic images. Contrast Media Mol. Imaging, 2019, 5982834 (2019). https://doi.org/10.1155/2019/5982834
Munir, K., Elahi, H., Ayub, A., Frezza, F., Rizzi, A.: Cancer diagnosis using deep learning: a bibliographic review. Cancers, 11(9), 1235, (2019). https://doi.org/10.3390/cancers11091235
Chougrad, H., Zouaki, H., Alheyane, O.: Deep convolutional neural networks for breast cancer screening. Comput. Methods Programs Biomed. 157, 19–30 (2018)
Das, K., Conjeti, S., Roy, A.G., Chatterjee, J., Sheet, D.: Multiple instances learning of deep convolutional neural networks for breast histopathology whole slide classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 578–581. IEEE, Washington, USA (2018)
Chiao, J.Y., et al.: Detection and classification the breast tumors using mask R-CNN on sonograms. Medicine. 98(19), e15200 (2019)
Jiang, Y., Chen, L., Zhang, H., Xiao, X.: Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module. PloS ONE. 14(3), e0214587 (2019)
Jiménez-Gaona, Y., Rodríguez-Álvarez, M.J., Lakshminarayanan, V.: Deep-learning-based computer-aided systems for breast cancer imaging: a critical review. Appl. Sci. 10(22), 8298 (2020). https://doi.org/10.3390/app10228298
Duraisamy, S., Emperumal, S.: Computer-aided mammogram diagnosis system using deep learning convolutional fully complex-valued relaxation neural network classifier. IET Comput. Vision 11(8), 656–662 (2017)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Castillo, D., Lakshminarayanan, V., Rodríguez-Álvarez, M.J.: MRI images, brain lesions and deep learning appl. Science 11, 1675 (2021). https://doi.org/10.3390/app11041675
Ravì, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2016)
Mohsen, H., El-Dahshan, E.S.A., El-Horbaty, E.S.M., Salem, A.B.M.: Classification using deep learning neural networks for brain tumors. Future Comput. Inf. J. 3(1), 68–71 (2018)
Matta, S.: Various image segmentation techniques. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(6), 7536–7539 (2014)
Zhou, Z., Wu, W., Wu, S., Tsui, P.-H., Lin, C.-C., Zhang, L., et al.: Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts. Ultrasound Imaging 36(4), 256–276 (2014)
Levman, J., Warner, E., Causer, P., Martel, A.: Semi-automatic region-of-interest segmentation based computer-aided diagnosis of mass lesions from dynamic contrast-enhanced magnetic resonance imaging based breast cancer screening. J. Digit. Imaging 27(5), 670–678 (2014)
Yap, M.H., et al.: Automated breast ultrasound lesions detection using convolutional neural networks. IEEE J. Biomed. Health Inform. 22(4), 1218–1226 (2017)
Cheng, B., Ran, L., Chou, Y.H., Cheng, J.Z.: Boundary regularized convolutional neural network for layer parsing of breast anatomy in automated whole breast ultrasound. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer International Publishing, Cham, pp. 259–266 (2017). ISBN 978–3–319–66179–7
Huynh, B., Drukker, K., Giger, M.: MO-DE-207B-06: computer-aided diagnosis of breast ultrasound images using transfer learning from deep convolutional neural networks. Med. Phys. 243(6), 3705 (2016)
Nahid, A.A., Mehrabi, M.A., Kong, Y.: Histopathological breast cancer image classification by deep neural network techniques guided by local clustering. Biomed. Res. Int. 2018, 2362108 (2018). https://doi.org/10.1155/2018/2362108
Ragab, D.A., Sharkas, M., Marshall, S., Ren, J.: Breast cancer detection using deep convolutional neural networks and support vector machines. Peer J. 7, e6201 (2019). https://doi.org/10.7717/peerj.6201
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR, (2015). arXiv preprint arXiv:1409.1556 (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90.
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269 (2017). https://doi.org/10.1109/CVPR.2017.243
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Lopez, M.G., et al.: BCDR: a breast cancer digital repository. In: 15th International Conference on Experimental Mechanics, Porto, Portugal, vol. 1215, pp.1–5 (2012). https://bcdr.eu/
Marcomini, K.D., Carneiro, A.A., Schiabel, H.: Application of artificial neural network models in segmentation and classification of nodules in breast ultrasound digital images. Int. J. Biomed. Imaging. 2016, 13 (2016). https://doi.org/10.1155/2016/7987212
Al-Masni, M.A., et al.: Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput. Methods Programs Biomed. 157, 85–94 (2018)
Debelee, T.G., Schwenker, F., Ibenthal, A., Yohannes, D.: Survey of deep learning in breast cancer image analysis. Evol. Syst. 11(1), 143–163 (2019). https://doi.org/10.1007/s12530-019-09297-2
Ahmed, A.H., Salem, M.A.M.: Mammogram-Based cancer detection using deep convolutional neural networks. In: 2018 13th International Conference on Computer Engineering and Systems (ICCES), pp. 694–699. IEEE, Egypt (2018). https://doi.org/10.1109/ICCES.2018.8639224
Prabhakar, T., Poonguzhali, S.: Automatic detection and classification of benign and malignant lesions in breast ultrasound images using texture morphological and fractal features. In: 2017 10th Biomedical Engineering International Conference (BMEiCON), pp. 1–5. IEEE, Japan (2017)
Alkhaleefah, M., Ma, S.C., Chang, Y.L., Huang, B., Chittem, P.K., Achhannagari, V.P.:https://doi.org/10.3390/app10113999 Double-shot transfer learning for breast cancer classification from X-ray images. Appl. Sci. 10(11), 3999 (2020).
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Sun, Y., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep Networks with Stochastic Depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9908. Springer, Cham. (2016). https://doi.org/10.1007/978-3-319-46493-0_39https://doi.org/10.1007/978-3-319-46493-0_39
Acknowledgement
VL would like to thank the natural sciences and engineering research council of Canada (NSERC) for a discovery grant. Y.J.G. and D.C.M. acknowledge the research support of Universidad Técnica Particular de Loja through the project PROY_INV_QUI_2020_2784 and the CSIC grant PTA2019–017113-1/AEI/https://doi.org/10.13039/501100011033.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Jiménez Gaona, Y., Rodriguez-Alvarez, M.J., Espino-Morato, H., Castillo Malla, D., Lakshminarayanan, V. (2021). DenseNet for Breast Tumor Classification in Mammographic Images. In: Rojas, I., Castillo-Secilla, D., Herrera, L.J., Pomares, H. (eds) Bioengineering and Biomedical Signal and Image Processing. BIOMESIP 2021. Lecture Notes in Computer Science(), vol 12940. Springer, Cham. https://doi.org/10.1007/978-3-030-88163-4_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-88163-4_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-88162-7
Online ISBN: 978-3-030-88163-4
eBook Packages: Computer ScienceComputer Science (R0)