Nothing Special   »   [go: up one dir, main page]

Skip to main content

Games of Incomplete Information: A Framework Based on Belief Functions

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12897))

  • 832 Accesses

Abstract

This paper proposes a model for incomplete games where the knowledge of the players is represented by a Dempster-Shafer belief function. Beyond an extension of the classical definitions, it shows such a game can be transformed into an equivalent hypergraphical complete game (without uncertainty), thus generalizing Howson and Rosenthal’s theorem to the framework of belief functions and to any number of players. The complexity of this transformation is finally studied and shown to be polynomial in the degree of k-additivity of the mass function.

Pierre Pomeret-Coquot and Helene Fargier have benefited from the AI Interdisciplinary Institute ANITI. ANITI is funded by the French “Investing for the Future – PIA3” program under the Grant agreement n\(^\circ \)ANR-19-PI3A-0004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Named after Selten, who proposed a similar definition for Bayesian games [16].

  2. 2.

    We could use the notation \(\rho \) for both, but the pure strategy profiles of the credal game are vectors of functions \(\rho _i: \varTheta _i \mapsto A_i\) while the pure strategy profiles of \(\tilde{G}\) are vectors in \(\prod _{i\in N, \theta _i \in \varTheta _i} A_i\). So, we keep the two notations \(\tilde{\rho }\) and \(\rho \).

  3. 3.

    The proofs are omitted for the sake of brevity and can be found at [11].

  4. 4.

    Notice that in the latter approach, the belief function is understood as the lower bound of an imprecise probability – under this interpretation, the conditioning at work must rather be Fagin-Halpern’s [10].

References

  1. Augustin, T., Schollmeyer, G.: Comment: on focusing, soft and strong revision of choquet capacities and their role in statistics. Stat. Sci. 36(2), 205–209 (2021)

    Article  Google Scholar 

  2. Campos, L.M.D., Huete, J.F., Moral, S.: Probability intervals: a tool for uncertain reasoning. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2(2), 167–196 (1994)

    Article  MathSciNet  Google Scholar 

  3. Chapman, A., Farinelli, A., de Cote, E.M., Rogers, A., Jennings, N.: A distributed algorithm for optimising over pure strategy nash equilibria. In: Proceedings AAAI (2010)

    Google Scholar 

  4. Choquet, G.: Theory of capacities. Ann. de l’institut Four. 5, 131–295 (1954)

    Article  MathSciNet  Google Scholar 

  5. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  6. Denoeux, T., Shenoy, P.P.: An interval-valued utility theory for decision making with dempster-shafer belief functions. Int. J. Approx. Reason. 124, 194–216 (2020)

    Article  MathSciNet  Google Scholar 

  7. Dubois, D., Denoeux, T.: Conditioning in dempster-shafer theory: prediction vs. revision. In: Proceedings BELIEF, vol. 164, pp. 385–392. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29461-7_45

  8. Eichberger, J., Kelsey, D.: Non-Additive Beliefs and Game Theory. Tilburg University, Center for Economic Research, Technical report (1994)

    Google Scholar 

  9. Ellsberg, D.: Risk, ambiguity, and the savage axioms. Q. J. Econ. 75, 643–669 (1961)

    Article  MathSciNet  Google Scholar 

  10. Fagin, R., Halpern, J.Y.: A new approach to updating beliefs. In: Proceedings UAI, pp. 347–374 (1990)

    Google Scholar 

  11. Fargier, H., Martin-Dorel, E., Pomeret-Coquot, P.: Games of Incomplete Information: a Framework Based on Belief Functions – version with proofs. https://www.irit.fr/~Erik.Martin-Dorel/ecrits/2021_credal-games_ecsqaru_extended.pdf or in HAL

  12. Ghirardato, P., Le Breton, M.: Choquet rationality. J. Econ. Theory 90(2), 277–285 (2000)

    Article  MathSciNet  Google Scholar 

  13. Gilboa, I.: Expected utility with purely subjective non-additive probabilities. J. Math. Econ. 16(1), 65–88 (1987)

    Article  Google Scholar 

  14. Gilboa, I., Schmeidler, D.: Maxmin expected utility with non-unique prior. J. Math. Econ. 18(2), 141–153 (1989)

    Article  Google Scholar 

  15. Grabisch, M.: Upper approximation of non-additive measures by k-additive measures-the case of belief functions. In: ISIPTA, pp. 158–164 (1999)

    Google Scholar 

  16. Harsanyi, J.C.: Games with incomplete information played by “bayesian’’ players, I-III part I. The basic model. Manag. Sci. 14(3), 159–182 (1967)

    Article  MathSciNet  Google Scholar 

  17. Howson, J.T., Jr., Rosenthal, R.W.: Bayesian equilibria of finite two-person games with incomplete information. Manag. Sci. 21(3), 313–315 (1974)

    Article  MathSciNet  Google Scholar 

  18. Jaffray, J.Y.: Linear utility theory for belief functions. Oper. Res. Lett. 8(2), 107–112 (1989)

    Article  MathSciNet  Google Scholar 

  19. Miranda, P., Grabisch, M., Gil, P.: Dominance of capacities by \(k\)-additive belief functions. Eur. J. Oper. Res. 175(2), 912–930 (2006)

    Article  Google Scholar 

  20. Montes, I., Miranda, E., Destercke, S.: Unifying neighbourhood and distortion models: Part II - new models and synthesis. Int. J. Gen. Syst. 49(6), 636–674 (2020)

    Article  MathSciNet  Google Scholar 

  21. Morgenstern, O., Von Neumann, J.: Theory of Games and Economic Behavior. Princeton University Press (1953)

    Google Scholar 

  22. Mukerji, S.: Understanding the nonadditive probability decision model. Econ. Theory 9(1), 23–46 (1997)

    Article  MathSciNet  Google Scholar 

  23. Mukerji, S., Shin, H.S.: Equilibrium departures from common knowledge in games with non-additive expected utility. Adv. Theor. Econ. 2(1), 1011 (2002)

    MathSciNet  Google Scholar 

  24. Myerson, R.B.: Game Theory. Harvard University Press, Cambridge (2013)

    Book  Google Scholar 

  25. Nash, J.: Non-cooperative games. Ann. Math., 286–295 (1951)

    Google Scholar 

  26. Papadimitriou, C.H., Roughgarden, T.: Computing correlated equilibria in multi-player games. J. ACM 55(3), 1–29 (2008)

    Article  MathSciNet  Google Scholar 

  27. Quiggin, J.: A Theory of Anticipated Utility. J. Econ. Behav. Organ. 3(4), 323–343 (1982)

    Article  Google Scholar 

  28. Savage, L.J.: The Foundations of Statistics. Wiley, Hoboken (1954)

    MATH  Google Scholar 

  29. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–261 (1986)

    Article  MathSciNet  Google Scholar 

  30. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  Google Scholar 

  31. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66(2), 191–234 (1994)

    Article  MathSciNet  Google Scholar 

  32. Wahbi, M., Brown, K.N.: A distributed asynchronous solver for nash equilibria in hypergraphical games. Front. Artif. Intell. Appl. 285, 1291–1299 (2016)

    MATH  Google Scholar 

  33. Yanovskaya, E.: Equilibrium points in polymatrix games. Lithuanian Math. J. 8, 381–384 (1968)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Pomeret-Coquot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fargier, H., Martin-Dorel, É., Pomeret-Coquot, P. (2021). Games of Incomplete Information: A Framework Based on Belief Functions. In: Vejnarová, J., Wilson, N. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2021. Lecture Notes in Computer Science(), vol 12897. Springer, Cham. https://doi.org/10.1007/978-3-030-86772-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86772-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86771-3

  • Online ISBN: 978-3-030-86772-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics