Nothing Special   »   [go: up one dir, main page]

Skip to main content

Management of Artificial Intelligence: Feasibility, Desirability and Viability

  • Chapter
  • First Online:
Engineering the Transformation of the Enterprise

Abstract

Artificial Intelligence is evolving and being used in more and more products and applications in business and society. Research in artificial intelligence is dominated by computer science. The focus is on the development of innovative algorithms and the design of processors and storages required for different application scenarios. Numerous prototypes are developed for a wide variety of applications. Only a few of these prototypes make it into productive applications that create lasting business benefits. Discussions with numerous companies show that professional processes and structures are needed to develop and operate artificial intelligence applications. We refer to these processes and structures as management of informatics. This article describes our understanding of artificial intelligence, shows examples of concrete business benefits, lists exemplary challenges, and describes the basic processes of the management of artificial intelligence. This article is based on a comprehensive literature review as well as numerous structured and open discussions with people from applying companies and computer scientists from the academic environment who deal with artificial intelligence and its use. An extended version of the article has been published in the German Springer Essentials series titled “Bausteine eines Managements Künstlicher Intelligenz: Eine Standortbestimmung”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical Approach. Oxford University Press. (1998)

    Google Scholar 

  2. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited. (2013)

    Google Scholar 

  3. Kaplan, A., Haenlein, M.: Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 62, 15–25 (2019)

    Article  Google Scholar 

  4. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959)

    Article  MathSciNet  Google Scholar 

  5. Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Sig. Process. 7, 197–387 (2014)

    Article  MathSciNet  Google Scholar 

  6. McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity, (1943).

    Book  Google Scholar 

  7. Wiener, N.: Cybernetics: Or Control and Communication in the Animal and the Machine. Technology Press (1948)

    Google Scholar 

  8. Koehler, J.: From Theory to Practice: AI Planning for High Performance Elevator Control. Springer, Berlin (2001)

    MATH  Google Scholar 

  9. Koehler, J., Ottiger, D.: An AI-based approach to destination control in elevators. AI Mag. 23, 59–78 (2002)

    Google Scholar 

  10. Hillig, J.: Lift-Odyssee im Zürcher Stadtspital Triemli. https://www.blick.ch/news/schweiz/zuerich/lift-odyssee-im-zuercher-stadtspital-triemli-besucher-sind-mit-der-handhabung-nicht-klar-gekommen-id8088843.html (2018)

  11. Hale, J.: More Than 500 Hours of Content Are Now Being Uploaded to YouTube Every Minute. https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/

  12. Bitkom: Digitalisierung gestalten mit dem Periodensystem der Künstlichen Intelligenz. Ein Navigationssystem Für Entscheider. Bundesverband Informationswirtschaft, Telekommunikation Und Neue Medien e.V. (2018)

    Google Scholar 

  13. van Giffen, B., Borth, D., Brenner, W.: Management von Künstlicher Intelligenz in Unternehmen. HMD Praxis der Wirtschaftsinformatik. 57, 4–20 (2020)

    Article  Google Scholar 

  14. Dastin, J.: Amazon scraps secret AI recruiting tool that showed bias against women. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G (2018)

  15. Myers West, S.: In the Outcry over the Apple Card, Bias is a Feature, Not a Bug. https://medium.com/@AINowInstitute/in-the-outcry-over-the-apple-card-bias-is-a-feature-not-a-bug-532a4c75cc9f

  16. Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., Rahwan, I.: The Moral Machine experiment. Nature. 563, 59–64 (2018)

    Article  Google Scholar 

  17. Moral Machine. https://www.moralmachine.net/hl/de

  18. Lossau, N.: Autonome Autos: Ein buntes Muster legt ihr Gehirn lahm. https://www.welt.de/wissenschaft/article202616258/Autonome-Autos-Ein-buntes-Muster-legt-ihr-Gehirn-lahm.html (2019)

  19. Madaio, M.A., Stark, L., Wortman Vaughan, J., Wallach, H.: Co-designing checklists to understand organizational challenges and opportunities around fairness in AI. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–14. Association for Computing Machinery, New York, NY (2020)

    Google Scholar 

  20. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM. 39 (1996)

    Google Scholar 

  21. Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: Others: CRISP-DM 1.0: Step-by-step data mining guide. SPSS Inc. 9, 13 (2000)

    Google Scholar 

  22. Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández Orallo, J., Kull, M., Lachiche, N., Ramírez Quintana, M.J., Flach, P.A.: CRISP-DM twenty years later: from data mining processes to data science trajectories. IEEE Trans. Knowl. Data Eng. 1–1 (2019)

    Google Scholar 

  23. IBM: Analytics Solutions Unified Method (2016)

    Google Scholar 

  24. Matignon, R.: Data Mining Using SAS@ Enterprise Miner. Wiley (2007)

    Book  Google Scholar 

  25. Microsoft: What is the Team Data Science Process? https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview

  26. Siroker, D., Koomen, P.: A / B Testing: The Most Powerful Way to Turn Clicks Into Customers. Wiley (2013)

    Google Scholar 

  27. May, A., Sagodi, A., Dremel, C., van Giffen, B.: Realizing digital innovation from artificial intelligence. In: Forty-First International Conference on Information Systems. (2020)

    Google Scholar 

  28. Herrmann, A., Brenner, W., Stadler, R.: Autonomous Driving: How the Driverless Revolution will Change the World. Emerald Group. (2018)

    Google Scholar 

  29. Evgeniou, T., Hardoon, D.R., Ovchinnikov, A.: What Happens When AI is Used to Set Grades? https://hbr.org/2020/08/what-happens-when-ai-is-used-to-set-grades (2020)

  30. Brenner, W., Uebernickel, F.: Design Thinking: Das Handbuch. Frankfurter Allgemeine Buch (2015)

    Google Scholar 

  31. Design Thinking for AI. https://ai.iwi.unisg.ch/news/design-thinking-for-ai/

  32. Schlimmer, J.C., Granger, R.: Beyond Incremental Processing: Tracking Concept Drift. (1986)

    Google Scholar 

  33. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. arXiv preprint arXiv:1606.06565. (2016)

    Google Scholar 

  34. Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viegas, F., Wilson, J.: The What-If Tool: interactive probing of machine learning models. IEEE Trans. Vis. Comput. Graph. 26, 56–65 (2020)

    Google Scholar 

  35. Bellamy, R.K.E., Dey, K., Hind, M., Hoffman, S.C., Houde, S., Kannan, K., Lohia, P., Martino, J., Mehta, S., Mojsilovic, A., Nagar, S., Ramamurthy, K.N., Richards, J., Saha, D., Sattigeri, P., Singh, M., Varshney, K.R., Zhang, Y.: AI fairness 360: an extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias. IBM J. Res. Dev. 63 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brenner, W., van Giffen, B., Koehler, J. (2021). Management of Artificial Intelligence: Feasibility, Desirability and Viability. In: Aier, S., Rohner, P., Schelp, J. (eds) Engineering the Transformation of the Enterprise. Springer, Cham. https://doi.org/10.1007/978-3-030-84655-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84655-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84654-1

  • Online ISBN: 978-3-030-84655-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics