Abstract
Artificial Intelligence is evolving and being used in more and more products and applications in business and society. Research in artificial intelligence is dominated by computer science. The focus is on the development of innovative algorithms and the design of processors and storages required for different application scenarios. Numerous prototypes are developed for a wide variety of applications. Only a few of these prototypes make it into productive applications that create lasting business benefits. Discussions with numerous companies show that professional processes and structures are needed to develop and operate artificial intelligence applications. We refer to these processes and structures as management of informatics. This article describes our understanding of artificial intelligence, shows examples of concrete business benefits, lists exemplary challenges, and describes the basic processes of the management of artificial intelligence. This article is based on a comprehensive literature review as well as numerous structured and open discussions with people from applying companies and computer scientists from the academic environment who deal with artificial intelligence and its use. An extended version of the article has been published in the German Springer Essentials series titled “Bausteine eines Managements Künstlicher Intelligenz: Eine Standortbestimmung”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical Approach. Oxford University Press. (1998)
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited. (2013)
Kaplan, A., Haenlein, M.: Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 62, 15–25 (2019)
Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev. 3, 210–229 (1959)
Deng, L., Yu, D.: Deep learning: methods and applications. Found. Trends Sig. Process. 7, 197–387 (2014)
McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity, (1943).
Wiener, N.: Cybernetics: Or Control and Communication in the Animal and the Machine. Technology Press (1948)
Koehler, J.: From Theory to Practice: AI Planning for High Performance Elevator Control. Springer, Berlin (2001)
Koehler, J., Ottiger, D.: An AI-based approach to destination control in elevators. AI Mag. 23, 59–78 (2002)
Hillig, J.: Lift-Odyssee im Zürcher Stadtspital Triemli. https://www.blick.ch/news/schweiz/zuerich/lift-odyssee-im-zuercher-stadtspital-triemli-besucher-sind-mit-der-handhabung-nicht-klar-gekommen-id8088843.html (2018)
Hale, J.: More Than 500 Hours of Content Are Now Being Uploaded to YouTube Every Minute. https://www.tubefilter.com/2019/05/07/number-hours-video-uploaded-to-youtube-per-minute/
Bitkom: Digitalisierung gestalten mit dem Periodensystem der Künstlichen Intelligenz. Ein Navigationssystem Für Entscheider. Bundesverband Informationswirtschaft, Telekommunikation Und Neue Medien e.V. (2018)
van Giffen, B., Borth, D., Brenner, W.: Management von Künstlicher Intelligenz in Unternehmen. HMD Praxis der Wirtschaftsinformatik. 57, 4–20 (2020)
Dastin, J.: Amazon scraps secret AI recruiting tool that showed bias against women. https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G (2018)
Myers West, S.: In the Outcry over the Apple Card, Bias is a Feature, Not a Bug. https://medium.com/@AINowInstitute/in-the-outcry-over-the-apple-card-bias-is-a-feature-not-a-bug-532a4c75cc9f
Awad, E., Dsouza, S., Kim, R., Schulz, J., Henrich, J., Shariff, A., Bonnefon, J.-F., Rahwan, I.: The Moral Machine experiment. Nature. 563, 59–64 (2018)
Moral Machine. https://www.moralmachine.net/hl/de
Lossau, N.: Autonome Autos: Ein buntes Muster legt ihr Gehirn lahm. https://www.welt.de/wissenschaft/article202616258/Autonome-Autos-Ein-buntes-Muster-legt-ihr-Gehirn-lahm.html (2019)
Madaio, M.A., Stark, L., Wortman Vaughan, J., Wallach, H.: Co-designing checklists to understand organizational challenges and opportunities around fairness in AI. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–14. Association for Computing Machinery, New York, NY (2020)
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Commun. ACM. 39 (1996)
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., Wirth, R.: Others: CRISP-DM 1.0: Step-by-step data mining guide. SPSS Inc. 9, 13 (2000)
Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández Orallo, J., Kull, M., Lachiche, N., Ramírez Quintana, M.J., Flach, P.A.: CRISP-DM twenty years later: from data mining processes to data science trajectories. IEEE Trans. Knowl. Data Eng. 1–1 (2019)
IBM: Analytics Solutions Unified Method (2016)
Matignon, R.: Data Mining Using SAS@ Enterprise Miner. Wiley (2007)
Microsoft: What is the Team Data Science Process? https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview
Siroker, D., Koomen, P.: A / B Testing: The Most Powerful Way to Turn Clicks Into Customers. Wiley (2013)
May, A., Sagodi, A., Dremel, C., van Giffen, B.: Realizing digital innovation from artificial intelligence. In: Forty-First International Conference on Information Systems. (2020)
Herrmann, A., Brenner, W., Stadler, R.: Autonomous Driving: How the Driverless Revolution will Change the World. Emerald Group. (2018)
Evgeniou, T., Hardoon, D.R., Ovchinnikov, A.: What Happens When AI is Used to Set Grades? https://hbr.org/2020/08/what-happens-when-ai-is-used-to-set-grades (2020)
Brenner, W., Uebernickel, F.: Design Thinking: Das Handbuch. Frankfurter Allgemeine Buch (2015)
Design Thinking for AI. https://ai.iwi.unisg.ch/news/design-thinking-for-ai/
Schlimmer, J.C., Granger, R.: Beyond Incremental Processing: Tracking Concept Drift. (1986)
Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety. arXiv preprint arXiv:1606.06565. (2016)
Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viegas, F., Wilson, J.: The What-If Tool: interactive probing of machine learning models. IEEE Trans. Vis. Comput. Graph. 26, 56–65 (2020)
Bellamy, R.K.E., Dey, K., Hind, M., Hoffman, S.C., Houde, S., Kannan, K., Lohia, P., Martino, J., Mehta, S., Mojsilovic, A., Nagar, S., Ramamurthy, K.N., Richards, J., Saha, D., Sattigeri, P., Singh, M., Varshney, K.R., Zhang, Y.: AI fairness 360: an extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias. IBM J. Res. Dev. 63 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Brenner, W., van Giffen, B., Koehler, J. (2021). Management of Artificial Intelligence: Feasibility, Desirability and Viability. In: Aier, S., Rohner, P., Schelp, J. (eds) Engineering the Transformation of the Enterprise. Springer, Cham. https://doi.org/10.1007/978-3-030-84655-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-84655-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84654-1
Online ISBN: 978-3-030-84655-8
eBook Packages: Computer ScienceComputer Science (R0)