Abstract
The advancement of robotics technology over the last years and the parallel evolution of the AI, Big Data, Industry 4.0 and Internet of Things (IoT) paradigms have paved the ground for applications that extend far beyond the use of robots as mindless repetitive machines. The number of technical configurations/solutions grows exponentially when considering factors such as (a) the particularities of the task to be performed (e.g. type of part, weight, dimensions, process to be carried out etc.) (b) the type of robots that can address these requirements (fixed or mobile robots, high/low payload, exoskeletons, aerial robots etc.), (c) the type of collaboration and interaction that would be appropriate for the task and (d) the special requirements of the production domain where such tasks are needed. This chapter aims to present the existing approaches on the implementation of human robot collaborative applications and highlight the trends towards achieving seamless integration of humans and robots as co-workers in the factories of the future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Liyu Wang, Surya G. Nurzaman and Fumiya Iida (2017), “Soft-Material Robotics”, Foundations and Trends in Robotics, 5(3), 191–259.
References
Michalos G, Makris S, Papakostas N, Mourtzis D, Chryssolouris G (2010) Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP J Manuf Sci Technol 2:81–91. https://doi.org/10.1016/j.cirpj.2009.12.001
Chryssolouris G (2006) Manufacturing systems: theory and practice. Springer, New York
Galin R, Meshcheryakov R (2019) Review on human–robot interaction during collaboration in a shared workspace. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Springer
Paletta L, Brijacak I, Reiterer B, Pszeida M, Ganster H, Fuhrmann F, Weiss W, Ladstatter S, Dini A, Murg S, Mayer H (2019) Gaze-based human factors measurements for the evaluation of intuitive human-robot collaboration in real-time. In: 2019 24th IEEE international conference on emerging technologies and factory automation (ETFA). IEEE, Zaragoza, Spain, pp 1528–1531
Heyer C (2010) Human-robot interaction and future industrial robotics applications. In: 2010 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Taipei, pp 4749–4754
Gleeson B, MacLean K, Haddadi A, Croft E, Alcazar J (2013) Gestures for industry Intuitive human-robot communication from human observation. In: 2013 8th ACM/IEEE international conference on human-robot interaction (HRI). IEEE, Tokyo, Japan, pp 349–356
Krüger J, Lien TK, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann 58:628–646. https://doi.org/10.1016/j.cirp.2009.09.009
Bannat A, Gast J, Rehrl T, Rösel W, Rigoll G, Wallhoff F (2009) A multimodal human-robot-interaction scenario: working together with an industrial robot. In: Jacko JA (ed) Human-computer interaction. Novel interaction methods and techniques. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 303–311
Scholtz J (2003) Theory and evaluation of human robot interactions. In: Proceedings of the 36th annual Hawaii international conference on system sciences, 2003. IEEE, Big Island, HI, USA, p 10
Kosuge K, Yoshida H, Taguchi D, Fukuda T, Hariki K, Kanitani K, Sakai M (1994) Robot-human collaboration for new robotic applications. In: Proceedings of IECON’94—20th annual conference of IEEE industrial electronics. IEEE, Bologna, Italy, pp 713–718
Bauer A, Wollherr D, Buss M (2008) Human-robot collaboration: a survey. Int J Human Robot 5(1):47–66
Tan JTC, Duan F, Zhang Y, Watanabe K, Kato R, Arai T (2009) Human-robot collaboration in cellular manufacturing: Design and development. In: 2009 IEEE/RSJ international conference on intelligent robots and systems. IEEE, St. Louis, MO, USA, pp 29–34
Yanco HA, Drury J (2004) Classifying human-robot interaction: an updated taxonomy. In: 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat. No.04CH37583). IEEE, The Hague, Netherlands, pp 2841–2846
Michalos G, Makris S, Tsarouchi P, Guasch T, Kontovrakis D, Chryssolouris G (2015) Design considerations for safe human-robot collaborative workplaces. Procedia CIRP 37:248–253. https://doi.org/10.1016/j.procir.2015.08.014
Bdiwi M, Pfeifer M, Sterzing A (2017) A new strategy for ensuring human safety during various levels of interaction with industrial robots. CIRP Ann 66:453–456. https://doi.org/10.1016/j.cirp.2017.04.009
Stages of human-robot collaboration. https://www.kuka.com/en-us/future-production/human-robot-collaboration/6-stages-of-human-robot-collaboration. Accessed 12 Feb 2020
Mousavi Mohammadi A, Akbarzadeh A (2017) A real-time impedance-based singularity and joint-limits avoidance approach for manual guidance of industrial robots. Adv Robot 31:1016–1028. https://doi.org/10.1080/01691864.2017.1352536
Michalos G, Kousi N, Karagiannis P, Gkournelos C, Dimoulas K, Koukas S, Mparis K, Papavasileiou A, Makris S (2018) Seamless human robot collaborative assembly—an automotive case study. Mechatronics 55:194–211. https://doi.org/10.1016/j.mechatronics.2018.08.006
Kokkalis K, Michalos G, Aivaliotis P, Makris S (2018) An approach for implementing power and force limiting in sensorless industrial robots. Procedia CIRP 76:138–143. https://doi.org/10.1016/j.procir.2018.01.028
Michalos G, Makris S, Spiliotopoulos J, Misios I, Tsarouchi P, Chryssolouris G (2014) ROBO-PARTNER: seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. Procedia CIRP 23:71–76. https://doi.org/10.1016/j.procir.2014.10.079
Robot safety skin. https://www.koris-fs.de/en/products/robot-safety-skin/ (2020). Accessed 12 Feb 2020
Robot safety skin. https://www.bluedanuberobotics.com/airskin/ (2020). Accessed 12 Feb 2020
Krüger J, Schreck G, Surdilovic D (2011) Dual arm robot for flexible and cooperative assembly. CIRP Ann 60:5–8. https://doi.org/10.1016/j.cirp.2011.03.017
Makris S, Tsarouchi P, Matthaiakis A-S, Athanasatos A, Chatzigeorgiou X, Stefos M, Giavridis K, Aivaliotis S (2017) Dual arm robot in cooperation with humans for flexible assembly. CIRP Ann 66:13–16. https://doi.org/10.1016/j.cirp.2017.04.097
Michalos G, Makris S, Chryssolouris G (2014) The new assembly system paradigm. Int J Comput Integr Manufact, Available Online
Rubio F, Valero F, Llopis-Albert C (2019) A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int J Adv Rob Syst 16:172988141983959. https://doi.org/10.1177/1729881419839596
Mobile robots. https://www.mobile-industrial-robots.com/en/solutions/ (2020). Accessed 12 Feb 2020
Mobile robot. https://www.kuka.com/en-us/products/mobility/mobile-platforms (2020). Accessed 12 Feb 2020
Mobile platform. https://www.solvelight.com/product/arti3-mobile-robot-platform/ (2020). Accessed 12 Feb 2020
KMR IIWA mobile robot. https://www.kuka.com/en-us/products/mobility/mobile-robot-systems/kmr-iiwa (2020). Accessed 12 Feb 2020
KMR QUANTEC mobile robot. https://www.kuka.com/en-us/products/mobility/mobile-robot-systems/kmr-quantec (2020). Accessed 12 Feb 2020
FESTO mobile robot. https://www.festo.com/group/en/cms/10239.htm (2020). Accessed 12 Feb 2020
Kousi N, Michalos G, Aivaliotis S, Makris S (2018) An outlook on future assembly systems introducing robotic mobile dual arm workers. Procedia CIRP 72:33–38. https://doi.org/10.1016/j.procir.2018.03.130
Mobile robot app competition offers $25,000 prize. http://linuxgizmos.com/kuka-youbot-robot-app-competition/ (2020). Accessed 12 Feb 2020
TIAGo++, the robot you need for bi-manual tasks. http://blog.pal-robotics.com/tiago-bi-manual-robot-research/ (2020). Accessed 12 Feb 2020
Snake-arm robots. http://www.ocrobotics.com/technology-/snakearm-robots/ (2020). Accessed 12 Feb 2020
de Looze MP, Bosch T, Krause F, Stadler KS, O’Sullivan LW (2016) Exoskeletons for industrial application and their potential effects on physical workload. Ergonomics 59:671–681. https://doi.org/10.1080/00140139.2015.1081988
Karvouniari A, Michalos G, Dimitropoulos N, Makris S (2018) An approach for exoskeleton integration in manufacturing lines using Virtual Reality techniques. Procedia CIRP 78:103–108. https://doi.org/10.1016/j.procir.2018.08.315
Commercial exoskeletons in 2015. https://exoskeletonreport.com/2015/04/12-commercial-exoskeletons-in-2015/ (2020). Accessed 12 Feb 2020
Giones F, Brem A (2017) From toys to tools: the co-evolution of technological and entrepreneurial developments in the drone industry. Bus Horiz 60:875–884. https://doi.org/10.1016/j.bushor.2017.08.001
Hassanalian M, Abdelkefi A (2017) Classifications, applications, and design challenges of drones: a review. Prog Aerosp Sci 91:99–131. https://doi.org/10.1016/j.paerosci.2017.04.003
Tosato P, Facinelli D, Prada M, Gemma L, Rossi M, Brunelli D (2019) An autonomous swarm of drones for industrial gas sensing applications. In: 2019 IEEE 20th international symposium on “a world of wireless, mobile and multimedia networks” (WoWMoM). IEEE, Washington, DC, USA, pp 1–6
Pott A, Mütherich H, Kraus W, Schmidt V, Miermeister P, Verl A (2013) IPAnema: a family of cable-driven parallel robots for industrial applications. In: Bruckmann T, Pott A (eds) Cable-driven parallel robots. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 119–134
Kraus W, Schmidt V, Rajendra P, Pott A (2014) System identification and cable force control for a cable-driven parallel robot with industrial servo drives. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, Hong Kong, China, pp 5921–5926
Izard J-B, Gouttefarde M, Michelin M, Tempier O, Baradat C (2013) A reconfigurable robot for cable-driven parallel robotic research and industrial scenario proofing. In: Bruckmann T, Pott A (eds) Cable-driven parallel robots. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 135–148
HRC in the production of the BMW Group. https://www.kuka.com/en-de/industries/solutions-database/2017/06/solution-systems-bmw-dingolfing (2020). Accessed 12 Feb 2020
SIASUN collaborative robot helps the automobile industry to change its manufacturing mode. https://ifr.org/ifr-press-releases/news/siasun-collaborative-robot-helps-the-automobile-industry-to-chan (2020). Accessed 12 Feb 2020
Human-robot collaboration during headlight adjustment. https://www.kuka.com/en-de/industries/solutions-database/2019/01/hrc-headlight-adjustment (2020). Accessed 12 Feb 2020
Collaborative robotics puts people first. https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Collaborative-Robotics-Puts-People-First/content_id/7021 (2020). Accessed 12 Feb 2020
Collaborative robots improve Qisda production efficiency https://www.digitimes.com/news/a20190514PD210.html (2020). Accessed 12 Feb 2020
Electronics industry increasingly relies on collaborative robots to boost productivity. https://www.prnewswire.com/news-releases/electronics-industry-increasingly-relies-on-collaborative-robots-to-boost-productivity-300606226.html (2020). Accessed 12 Feb 2020
Collaborative robots in plastic and polymer production. https://www.digitalconnectmag.com/collaborative-robots-in-plastic-and-polymer-production/ (2020). Accessed 12 Feb 2020
What ‘Cobots’ can do for Blow Molders. https://www.ptonline.com/blog/post/what-cobots-can-do-for-blow-molders (2020). Accessed 12 Feb 2020
Collaborative industrial robots improve the food and agriculture industries. https://www.universal-robots.com/industries/food-and-agriculture/ (2020). Accessed 12 Feb 2020
First dumpling-making robot optimize production, entertain guests. https://www.universal-robots.com/case-stories/huis-ten-bosch/ (2020). Accessed 12 Feb 2020
Dimitropoulos N, Michalos G, Makris S, (2020) An outlook on future assembly systems—the SHERLOCK approach. In: 8th CIRP conference on assembly technologies and systems, (CATS 2020), Procedia CIRP, Athens, Greece (2020)
Whippany actuation systems. https://www.universal-robots.com/case-stories/whippany-actuations-systems/ (2020). Accessed 12 Feb 2020
BAE unveils smart factory for Tempest aircraft. https://www.wearefinn.com/topics/posts/bae-unveils-smart-factory-for-tempest-aircraft/ (2020). Accessed 12 Feb 2020
Universal robots doubles production of plastic and metal aerospace components despite labor shortage. https://www.assemblymag.com/articles/95566-universal-robots-doubles-production-of-plastic-and-metal-aerospace-components-despite-labor-shortage (2020). Accessed 12 Feb 2020
Collaborative robots in high mix, low volume shops. https://www.fabricatingandmetalworking.com/2016/02/collaborative-robots-in-high-mix-low-volume-shops/ (2020). Accessed 12 Feb 2020
Papanastasiou S, Kousi N, Karagiannis P, Gkournelos C, Papavasileiou A, Dimoulas K, Baris K, Koukas S, Michalos G, Makris S (2019) Towards seamless human robot collaboration: integrating multimodal interaction. Int J Adv Manuf Technol 105:3881–3897. https://doi.org/10.1007/s00170-019-03790-3
Argyrou A, Giannoulis C, Sardelis A, Karagiannis P, Michalos G, Makris S (2018) A data fusion system for controlling the execution status in human-robot collaborative cells. Procedia CIRP 76:193–198. https://doi.org/10.1016/j.procir.2018.01.012
Andrianakos G, Dimitropoulos N, Michalos G, Makris S (2019) An approach for monitoring the execution of human based assembly operations using machine learning. Procedia CIRP 86:198–203. https://doi.org/10.1016/j.procir.2020.01.040
Nikolakis N, Maratos V, Makris S (2019) A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace. Robot Comput-Integr Manufact 56:233–243. https://doi.org/10.1016/j.rcim.2018.10.003
Tsarouchi P, Michalos G, Makris S, Athanasatos T, Dimoulas K, Chryssolouris G (2017) On a human–robot workplace design and task allocation system. Int J Comput Integr Manuf 30:1272–1279. https://doi.org/10.1080/0951192X.2017.1307524
Tsarouchi P, Makris S, Chryssolouris G (2016) Human—robot interaction review and challenges on task planning and programming. Int J Comput Integr Manuf 29:916–931. https://doi.org/10.1080/0951192X.2015.1130251
Evangelou G, Dimitropoulos N, Michalos G, Makris S (2020) An approach for task and action planning in human-robot collaborative cells using AI. In: 8th CIRP conference on assembly technologies and systems (CATS 2020). Procedia CIRP. Athens, Greece.
Michalos G, Karagiannis P, Makris S, Tokçalar Ö, Chryssolouris G (2016) Augmented reality (AR) applications for supporting human-robot interactive cooperation. Procedia CIRP 41:370–375. https://doi.org/10.1016/j.procir.2015.12.005
Makris S, Karagiannis P, Koukas S, Matthaiakis A-S (2016) Augmented reality system for operator support in human–robot collaborative assembly. CIRP Ann 65:61–64. https://doi.org/10.1016/j.cirp.2016.04.038
Gkournelos C, Karagiannis P, Kousi N, Michalos G, Koukas S, Makris S (2018) Application of wearable devices for supporting operators in human-robot cooperative assembly tasks. Procedia CIRP 76:177–182. https://doi.org/10.1016/j.procir.2018.01.019
Tsarouchi P, Athanasatos A, Makris S, Chatzigeorgiou X, Chryssolouris G (2016) High level robot programming using body and hand gestures. Procedia CIRP 55:1–5. https://doi.org/10.1016/j.procir.2016.09.020
Xu Y, Chen J, Yang Q, Guo Q (2019) Human posture recognition and fall detection using kinect V2 camera. In: 2019 Chinese control conference (CCC). IEEE, Guangzhou, China, pp 8488–8493
Mainprice J, Berenson D (2013) Human-robot collaborative manipulation planning using early prediction of human motion. In: 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Tokyo, pp 299–306
Boston Consulting Group, 2015, How a take-off in advanced robotics will power the next productivity surge. http://www.automationsmaland.se/dokument/BCG_The_Robotics_Revolution_Sep_2015.pdf (2020). Accessed 12 Feb 2020
McKinsey report automation, robotics, and the factory of the future (2017). https://www.mckinsey.it/file/7736/download?token=WJBccDzU (2020). Accessed 12 Feb 2020
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Michalos, G., Karagiannis, P., Dimitropoulos, N., Andronas, D., Makris, S. (2022). Human Robot Collaboration in Industrial Environments. In: Aldinhas Ferreira, M.I., Fletcher, S.R. (eds) The 21st Century Industrial Robot: When Tools Become Collaborators. Intelligent Systems, Control and Automation: Science and Engineering, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-030-78513-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-78513-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78512-3
Online ISBN: 978-3-030-78513-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)