Nothing Special   »   [go: up one dir, main page]

Skip to main content

Human Robot Collaboration in Industrial Environments

  • Chapter
  • First Online:
The 21st Century Industrial Robot: When Tools Become Collaborators

Abstract

The advancement of robotics technology over the last years and the parallel evolution of the AI, Big Data, Industry 4.0 and Internet of Things (IoT) paradigms have paved the ground for applications that extend far beyond the use of robots as mindless repetitive machines. The number of technical configurations/solutions grows exponentially when considering factors such as (a) the particularities of the task to be performed (e.g. type of part, weight, dimensions, process to be carried out etc.) (b) the type of robots that can address these requirements (fixed or mobile robots, high/low payload, exoskeletons, aerial robots etc.), (c) the type of collaboration and interaction that would be appropriate for the task and (d) the special requirements of the production domain where such tasks are needed. This chapter aims to present the existing approaches on the implementation of human robot collaborative applications and highlight the trends towards achieving seamless integration of humans and robots as co-workers in the factories of the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Liyu Wang, Surya G. Nurzaman and Fumiya Iida (2017), “Soft-Material Robotics”, Foundations and Trends in Robotics, 5(3), 191–259.

References

  1. Michalos G, Makris S, Papakostas N, Mourtzis D, Chryssolouris G (2010) Automotive assembly technologies review: challenges and outlook for a flexible and adaptive approach. CIRP J Manuf Sci Technol 2:81–91. https://doi.org/10.1016/j.cirpj.2009.12.001

    Article  Google Scholar 

  2. Chryssolouris G (2006) Manufacturing systems: theory and practice. Springer, New York

    Google Scholar 

  3. Galin R, Meshcheryakov R (2019) Review on human–robot interaction during collaboration in a shared workspace. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). Springer

    Google Scholar 

  4. Paletta L, Brijacak I, Reiterer B, Pszeida M, Ganster H, Fuhrmann F, Weiss W, Ladstatter S, Dini A, Murg S, Mayer H (2019) Gaze-based human factors measurements for the evaluation of intuitive human-robot collaboration in real-time. In: 2019 24th IEEE international conference on emerging technologies and factory automation (ETFA). IEEE, Zaragoza, Spain, pp 1528–1531

    Google Scholar 

  5. Heyer C (2010) Human-robot interaction and future industrial robotics applications. In: 2010 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Taipei, pp 4749–4754

    Google Scholar 

  6. Gleeson B, MacLean K, Haddadi A, Croft E, Alcazar J (2013) Gestures for industry Intuitive human-robot communication from human observation. In: 2013 8th ACM/IEEE international conference on human-robot interaction (HRI). IEEE, Tokyo, Japan, pp 349–356

    Google Scholar 

  7. Krüger J, Lien TK, Verl A (2009) Cooperation of human and machines in assembly lines. CIRP Ann 58:628–646. https://doi.org/10.1016/j.cirp.2009.09.009

    Article  Google Scholar 

  8. Bannat A, Gast J, Rehrl T, Rösel W, Rigoll G, Wallhoff F (2009) A multimodal human-robot-interaction scenario: working together with an industrial robot. In: Jacko JA (ed) Human-computer interaction. Novel interaction methods and techniques. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 303–311

    Google Scholar 

  9. Scholtz J (2003) Theory and evaluation of human robot interactions. In: Proceedings of the 36th annual Hawaii international conference on system sciences, 2003. IEEE, Big Island, HI, USA, p 10

    Google Scholar 

  10. Kosuge K, Yoshida H, Taguchi D, Fukuda T, Hariki K, Kanitani K, Sakai M (1994) Robot-human collaboration for new robotic applications. In: Proceedings of IECON’94—20th annual conference of IEEE industrial electronics. IEEE, Bologna, Italy, pp 713–718

    Google Scholar 

  11. Bauer A, Wollherr D, Buss M (2008) Human-robot collaboration: a survey. Int J Human Robot 5(1):47–66

    Article  Google Scholar 

  12. Tan JTC, Duan F, Zhang Y, Watanabe K, Kato R, Arai T (2009) Human-robot collaboration in cellular manufacturing: Design and development. In: 2009 IEEE/RSJ international conference on intelligent robots and systems. IEEE, St. Louis, MO, USA, pp 29–34

    Google Scholar 

  13. Yanco HA, Drury J (2004) Classifying human-robot interaction: an updated taxonomy. In: 2004 IEEE international conference on systems, man and cybernetics (IEEE Cat. No.04CH37583). IEEE, The Hague, Netherlands, pp 2841–2846

    Google Scholar 

  14. Michalos G, Makris S, Tsarouchi P, Guasch T, Kontovrakis D, Chryssolouris G (2015) Design considerations for safe human-robot collaborative workplaces. Procedia CIRP 37:248–253. https://doi.org/10.1016/j.procir.2015.08.014

    Article  Google Scholar 

  15. Bdiwi M, Pfeifer M, Sterzing A (2017) A new strategy for ensuring human safety during various levels of interaction with industrial robots. CIRP Ann 66:453–456. https://doi.org/10.1016/j.cirp.2017.04.009

    Article  Google Scholar 

  16. Stages of human-robot collaboration. https://www.kuka.com/en-us/future-production/human-robot-collaboration/6-stages-of-human-robot-collaboration. Accessed 12 Feb 2020

  17. Mousavi Mohammadi A, Akbarzadeh A (2017) A real-time impedance-based singularity and joint-limits avoidance approach for manual guidance of industrial robots. Adv Robot 31:1016–1028. https://doi.org/10.1080/01691864.2017.1352536

    Article  Google Scholar 

  18. Michalos G, Kousi N, Karagiannis P, Gkournelos C, Dimoulas K, Koukas S, Mparis K, Papavasileiou A, Makris S (2018) Seamless human robot collaborative assembly—an automotive case study. Mechatronics 55:194–211. https://doi.org/10.1016/j.mechatronics.2018.08.006

    Article  Google Scholar 

  19. Kokkalis K, Michalos G, Aivaliotis P, Makris S (2018) An approach for implementing power and force limiting in sensorless industrial robots. Procedia CIRP 76:138–143. https://doi.org/10.1016/j.procir.2018.01.028

    Article  Google Scholar 

  20. Michalos G, Makris S, Spiliotopoulos J, Misios I, Tsarouchi P, Chryssolouris G (2014) ROBO-PARTNER: seamless human-robot cooperation for intelligent, flexible and safe operations in the assembly factories of the future. Procedia CIRP 23:71–76. https://doi.org/10.1016/j.procir.2014.10.079

    Article  Google Scholar 

  21. Robot safety skin. https://www.koris-fs.de/en/products/robot-safety-skin/ (2020). Accessed 12 Feb 2020

  22. Robot safety skin. https://www.bluedanuberobotics.com/airskin/ (2020). Accessed 12 Feb 2020

  23. Krüger J, Schreck G, Surdilovic D (2011) Dual arm robot for flexible and cooperative assembly. CIRP Ann 60:5–8. https://doi.org/10.1016/j.cirp.2011.03.017

    Article  Google Scholar 

  24. Makris S, Tsarouchi P, Matthaiakis A-S, Athanasatos A, Chatzigeorgiou X, Stefos M, Giavridis K, Aivaliotis S (2017) Dual arm robot in cooperation with humans for flexible assembly. CIRP Ann 66:13–16. https://doi.org/10.1016/j.cirp.2017.04.097

    Article  Google Scholar 

  25. Michalos G, Makris S, Chryssolouris G (2014) The new assembly system paradigm. Int J Comput Integr Manufact, Available Online

    Google Scholar 

  26. Rubio F, Valero F, Llopis-Albert C (2019) A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int J Adv Rob Syst 16:172988141983959. https://doi.org/10.1177/1729881419839596

    Article  Google Scholar 

  27. Mobile robots. https://www.mobile-industrial-robots.com/en/solutions/ (2020). Accessed 12 Feb 2020

  28. Mobile robot. https://www.kuka.com/en-us/products/mobility/mobile-platforms (2020). Accessed 12 Feb 2020

  29. Mobile platform. https://www.solvelight.com/product/arti3-mobile-robot-platform/ (2020). Accessed 12 Feb 2020

  30. KMR IIWA mobile robot. https://www.kuka.com/en-us/products/mobility/mobile-robot-systems/kmr-iiwa (2020). Accessed 12 Feb 2020

  31. KMR QUANTEC mobile robot. https://www.kuka.com/en-us/products/mobility/mobile-robot-systems/kmr-quantec (2020). Accessed 12 Feb 2020

  32. FESTO mobile robot. https://www.festo.com/group/en/cms/10239.htm (2020). Accessed 12 Feb 2020

  33. Kousi N, Michalos G, Aivaliotis S, Makris S (2018) An outlook on future assembly systems introducing robotic mobile dual arm workers. Procedia CIRP 72:33–38. https://doi.org/10.1016/j.procir.2018.03.130

    Article  Google Scholar 

  34. Mobile robot app competition offers $25,000 prize. http://linuxgizmos.com/kuka-youbot-robot-app-competition/ (2020). Accessed 12 Feb 2020

  35. TIAGo++, the robot you need for bi-manual tasks. http://blog.pal-robotics.com/tiago-bi-manual-robot-research/ (2020). Accessed 12 Feb 2020

  36. Snake-arm robots. http://www.ocrobotics.com/technology-/snakearm-robots/ (2020). Accessed 12 Feb 2020

  37. de Looze MP, Bosch T, Krause F, Stadler KS, O’Sullivan LW (2016) Exoskeletons for industrial application and their potential effects on physical workload. Ergonomics 59:671–681. https://doi.org/10.1080/00140139.2015.1081988

    Article  Google Scholar 

  38. Karvouniari A, Michalos G, Dimitropoulos N, Makris S (2018) An approach for exoskeleton integration in manufacturing lines using Virtual Reality techniques. Procedia CIRP 78:103–108. https://doi.org/10.1016/j.procir.2018.08.315

    Article  Google Scholar 

  39. Commercial exoskeletons in 2015. https://exoskeletonreport.com/2015/04/12-commercial-exoskeletons-in-2015/ (2020). Accessed 12 Feb 2020

  40. Giones F, Brem A (2017) From toys to tools: the co-evolution of technological and entrepreneurial developments in the drone industry. Bus Horiz 60:875–884. https://doi.org/10.1016/j.bushor.2017.08.001

    Article  Google Scholar 

  41. Hassanalian M, Abdelkefi A (2017) Classifications, applications, and design challenges of drones: a review. Prog Aerosp Sci 91:99–131. https://doi.org/10.1016/j.paerosci.2017.04.003

    Article  Google Scholar 

  42. Tosato P, Facinelli D, Prada M, Gemma L, Rossi M, Brunelli D (2019) An autonomous swarm of drones for industrial gas sensing applications. In: 2019 IEEE 20th international symposium on “a world of wireless, mobile and multimedia networks” (WoWMoM). IEEE, Washington, DC, USA, pp 1–6

    Google Scholar 

  43. Pott A, Mütherich H, Kraus W, Schmidt V, Miermeister P, Verl A (2013) IPAnema: a family of cable-driven parallel robots for industrial applications. In: Bruckmann T, Pott A (eds) Cable-driven parallel robots. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 119–134

    Chapter  Google Scholar 

  44. Kraus W, Schmidt V, Rajendra P, Pott A (2014) System identification and cable force control for a cable-driven parallel robot with industrial servo drives. In: 2014 IEEE international conference on robotics and automation (ICRA). IEEE, Hong Kong, China, pp 5921–5926

    Google Scholar 

  45. Izard J-B, Gouttefarde M, Michelin M, Tempier O, Baradat C (2013) A reconfigurable robot for cable-driven parallel robotic research and industrial scenario proofing. In: Bruckmann T, Pott A (eds) Cable-driven parallel robots. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 135–148

    Chapter  Google Scholar 

  46. HRC in the production of the BMW Group. https://www.kuka.com/en-de/industries/solutions-database/2017/06/solution-systems-bmw-dingolfing (2020). Accessed 12 Feb 2020

  47. SIASUN collaborative robot helps the automobile industry to change its manufacturing mode. https://ifr.org/ifr-press-releases/news/siasun-collaborative-robot-helps-the-automobile-industry-to-chan (2020). Accessed 12 Feb 2020

  48. Human-robot collaboration during headlight adjustment. https://www.kuka.com/en-de/industries/solutions-database/2019/01/hrc-headlight-adjustment (2020). Accessed 12 Feb 2020

  49. Collaborative robotics puts people first. https://www.robotics.org/content-detail.cfm/Industrial-Robotics-Industry-Insights/Collaborative-Robotics-Puts-People-First/content_id/7021 (2020). Accessed 12 Feb 2020

  50. Collaborative robots improve Qisda production efficiency https://www.digitimes.com/news/a20190514PD210.html (2020). Accessed 12 Feb 2020

  51. Electronics industry increasingly relies on collaborative robots to boost productivity. https://www.prnewswire.com/news-releases/electronics-industry-increasingly-relies-on-collaborative-robots-to-boost-productivity-300606226.html (2020). Accessed 12 Feb 2020

  52. Collaborative robots in plastic and polymer production. https://www.digitalconnectmag.com/collaborative-robots-in-plastic-and-polymer-production/ (2020). Accessed 12 Feb 2020

  53. What ‘Cobots’ can do for Blow Molders. https://www.ptonline.com/blog/post/what-cobots-can-do-for-blow-molders (2020). Accessed 12 Feb 2020

  54. Collaborative industrial robots improve the food and agriculture industries. https://www.universal-robots.com/industries/food-and-agriculture/ (2020). Accessed 12 Feb 2020

  55. First dumpling-making robot optimize production, entertain guests. https://www.universal-robots.com/case-stories/huis-ten-bosch/ (2020). Accessed 12 Feb 2020

  56. Dimitropoulos N, Michalos G, Makris S, (2020) An outlook on future assembly systems—the SHERLOCK approach. In: 8th CIRP conference on assembly technologies and systems, (CATS 2020), Procedia CIRP, Athens, Greece (2020)

    Google Scholar 

  57. Whippany actuation systems. https://www.universal-robots.com/case-stories/whippany-actuations-systems/ (2020). Accessed 12 Feb 2020

  58. BAE unveils smart factory for Tempest aircraft. https://www.wearefinn.com/topics/posts/bae-unveils-smart-factory-for-tempest-aircraft/ (2020). Accessed 12 Feb 2020

  59. Universal robots doubles production of plastic and metal aerospace components despite labor shortage. https://www.assemblymag.com/articles/95566-universal-robots-doubles-production-of-plastic-and-metal-aerospace-components-despite-labor-shortage (2020). Accessed 12 Feb 2020

  60. Collaborative robots in high mix, low volume shops. https://www.fabricatingandmetalworking.com/2016/02/collaborative-robots-in-high-mix-low-volume-shops/ (2020). Accessed 12 Feb 2020

  61. Papanastasiou S, Kousi N, Karagiannis P, Gkournelos C, Papavasileiou A, Dimoulas K, Baris K, Koukas S, Michalos G, Makris S (2019) Towards seamless human robot collaboration: integrating multimodal interaction. Int J Adv Manuf Technol 105:3881–3897. https://doi.org/10.1007/s00170-019-03790-3

    Article  Google Scholar 

  62. Argyrou A, Giannoulis C, Sardelis A, Karagiannis P, Michalos G, Makris S (2018) A data fusion system for controlling the execution status in human-robot collaborative cells. Procedia CIRP 76:193–198. https://doi.org/10.1016/j.procir.2018.01.012

    Article  Google Scholar 

  63. Andrianakos G, Dimitropoulos N, Michalos G, Makris S (2019) An approach for monitoring the execution of human based assembly operations using machine learning. Procedia CIRP 86:198–203. https://doi.org/10.1016/j.procir.2020.01.040

    Article  Google Scholar 

  64. Nikolakis N, Maratos V, Makris S (2019) A cyber physical system (CPS) approach for safe human-robot collaboration in a shared workplace. Robot Comput-Integr Manufact 56:233–243. https://doi.org/10.1016/j.rcim.2018.10.003

    Article  Google Scholar 

  65. Tsarouchi P, Michalos G, Makris S, Athanasatos T, Dimoulas K, Chryssolouris G (2017) On a human–robot workplace design and task allocation system. Int J Comput Integr Manuf 30:1272–1279. https://doi.org/10.1080/0951192X.2017.1307524

    Article  Google Scholar 

  66. Tsarouchi P, Makris S, Chryssolouris G (2016) Human—robot interaction review and challenges on task planning and programming. Int J Comput Integr Manuf 29:916–931. https://doi.org/10.1080/0951192X.2015.1130251

    Article  Google Scholar 

  67. Evangelou G, Dimitropoulos N, Michalos G, Makris S (2020) An approach for task and action planning in human-robot collaborative cells using AI. In: 8th CIRP conference on assembly technologies and systems (CATS 2020). Procedia CIRP. Athens, Greece.

    Google Scholar 

  68. Michalos G, Karagiannis P, Makris S, Tokçalar Ö, Chryssolouris G (2016) Augmented reality (AR) applications for supporting human-robot interactive cooperation. Procedia CIRP 41:370–375. https://doi.org/10.1016/j.procir.2015.12.005

    Article  Google Scholar 

  69. Makris S, Karagiannis P, Koukas S, Matthaiakis A-S (2016) Augmented reality system for operator support in human–robot collaborative assembly. CIRP Ann 65:61–64. https://doi.org/10.1016/j.cirp.2016.04.038

    Article  Google Scholar 

  70. Gkournelos C, Karagiannis P, Kousi N, Michalos G, Koukas S, Makris S (2018) Application of wearable devices for supporting operators in human-robot cooperative assembly tasks. Procedia CIRP 76:177–182. https://doi.org/10.1016/j.procir.2018.01.019

    Article  Google Scholar 

  71. Tsarouchi P, Athanasatos A, Makris S, Chatzigeorgiou X, Chryssolouris G (2016) High level robot programming using body and hand gestures. Procedia CIRP 55:1–5. https://doi.org/10.1016/j.procir.2016.09.020

    Article  Google Scholar 

  72. Xu Y, Chen J, Yang Q, Guo Q (2019) Human posture recognition and fall detection using kinect V2 camera. In: 2019 Chinese control conference (CCC). IEEE, Guangzhou, China, pp 8488–8493

    Google Scholar 

  73. Mainprice J, Berenson D (2013) Human-robot collaborative manipulation planning using early prediction of human motion. In: 2013 IEEE/RSJ international conference on intelligent robots and systems. IEEE, Tokyo, pp 299–306

    Google Scholar 

  74. Boston Consulting Group, 2015, How a take-off in advanced robotics will power the next productivity surge. http://www.automationsmaland.se/dokument/BCG_The_Robotics_Revolution_Sep_2015.pdf (2020). Accessed 12 Feb 2020

  75. McKinsey report automation, robotics, and the factory of the future (2017). https://www.mckinsey.it/file/7736/download?token=WJBccDzU (2020). Accessed 12 Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotiris Makris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michalos, G., Karagiannis, P., Dimitropoulos, N., Andronas, D., Makris, S. (2022). Human Robot Collaboration in Industrial Environments. In: Aldinhas Ferreira, M.I., Fletcher, S.R. (eds) The 21st Century Industrial Robot: When Tools Become Collaborators. Intelligent Systems, Control and Automation: Science and Engineering, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-030-78513-0_2

Download citation

Publish with us

Policies and ethics