Abstract
Arrhythmia is one of the most common types of cardiovascular disease and poses a significant threat to human health. An electrocardiogram (ECG) assessment is the most commonly used method for the clinical judgment of arrhythmia. Using deep learning to detect an ECG automatically can improve the speed and accuracy of such judgment. In this paper, an improved arrhythmia classification method named CNN-BiLSTM, based on convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM), is proposed that can automatically identify four types of ECG signals: normal beat (N), premature ventricular contraction (V), left bundle branch block beat (L), and right bundle branch block beat (R). Compared with traditional CNN and BiLSTM models, CNN-BiLSTM can extract the features and dependencies before and after data processing better to achieve a higher classification accuracy. The results presented in this paper demonstrate that an arrhythmia classification method based on CNN-BiLSTM achieves a good performance and has potential for application.
This work was supported by the National Natural Science Foundation of China (Approval Number: 61903207), Shandong University Undergraduate Teaching Reform Research Project (Approval Number: M2018X078), and the Shandong Province Graduate Education Quality Improvement Program 2018 (Approval Number: SDYAL18088). The work was partially supported by the Major Science and Technology Innovation Projects of Shandong Province (Grant No. 2019JZZY010731).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Weiwei, C., Runlin, G., Lisheng, L., Manlu, Z., Wen, W., Yongjun, W., et al.: Outline of the report on cardiovascular diseases in China, 2014. Eur. Heart J. Suppl. J. Eur. Soc. Cardiol. 18(Suppl F), F2 (2016)
Ince, T., Kiranyaz, S., Gabbouj, M.: A generic and robust system for automated patient-specific classification of ECG signals. IEEE Trans. Biomed. Eng. 56(5), 1415–1426 (2009)
Rahman, Q.A., Tereshchenko, L.G., Kongkatong, M., Abraham, T., Abraham, M.R., Shatkay, H.: Utilizing ECG-based heartbeat classification for hypertrophic cardiomyopathy identification. IEEE Trans. Nanobiosci. 14(5), 505–512 (2015)
Bie, R., Zhang, G., Sun, Y., Xu, S., Li, Z., Song, H.: Smart assisted diagnosis solution with multi-sensor Holter. Neurocomputing 220, 67–75 (2017)
Zhang, Y., Sun, L., Song, H., Cao, X.: Ubiquitous WSN for healthcare: recent advances and future prospects. IEEE Internet Things J. 1(1), 311–318 (2014)
Acharya, U.R., Fujita, H., Lih, O.S., et al.: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf. Sci. 405, 81–90 (2017)
Oh, S.L., Ng, E.Y., San Tan, R., et al.: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 102, 278–287 (2018)
Chen, C., Hua, Z., Zhang, R., et al.: Automated arrhythmia classification based on a combination network of CNN and LSTM. Biomed. Signal Process. Control 57, 101819 (2020)
Osowski, S., Hoai, L.T., Markiewicz, T.: Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans. Biomed. Eng. 51, 582–589 (2004)
Rodriguez, J., Goni, A., Illarramendi, A.: Real-time classification of ECGs on a PDA. IEEE Trans. Inf. Technol. Biomed. 9, 23–34 (2005)
Melgani, F., Bazi, Y.: Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Inf. Technol. Biomed. 12, 667–677 (2008)
Gnecchi, J.A.G., Archundia, E.R., Anguiano, A.D.C.T., et al.: Following the path towards intelligently connected devices for on-line, real-time cardiac arrhythmia detection and classification. In: IEEE International Autumn Meeting on Power. IEEE (2016)
Huang, H., Liu, J., Zhu, Q., Wang, R., Hu, G.: A new hierarchical method for interpatient heartbeat classification using random projections and RR intervals. Biomed. Eng. Online 13(1), 90 (2014). https://doi.org/10.1186/1475-925X-13-90
Lin, C.C., Yang, C.M.: Heartbeat classification using normalized RR intervals and wavelet features. In: International Symposium on Computer, vol. 2014, pp. 650–653 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 84–90 (2012)
Xiong, Z., Stiles, M.K., Zhao, J.: Robust ECG signal classification for detection of atrial fibrillation using a novel neural network. In: Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017, pp. 1–4 (2017)
Fujita, H., Cimr, D.: Computer aided detection for fibrillations and flutters using deep convolutional neural network. Inf. Sci. 486, 231–239 (2019)
Zheng, Z., Chen, Z., Hu, F., et al.: An automatic diagnosis of arrhythmias using a combination of CNN and LSTM technology. Electronics 9(1), 121 (2020)
Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)
Mark, R., Moody, G.: MIT-BIH arrhythmia database directory. Massachusetts Institute of Technology, Cambridge (1988)
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85117 (2015)
Ma, F., Zhang, J., et al.: An automatic system for atrial fibrillation by using a CNN-LSTM model. Discret. Dyn. Nat. Soc. (2020)
Qian, Y., Bi, M., Tan, T., et al.: Very deep convolutional neural networks for noise robust speech recognition. IEEE-ACM Trans. Audio Speech Lang. 24, 2263–2276 (2016)
Dmitrievich, L.A.: Deep learning in information analysis of electrocardiogram signals for disease diagnostics. The Ministry of Education and Science of The Russian Federation Moscow Institute of Physics and Technology (2015)
Ma, F., Zhang, J., Liang, W., et al.: Automated classification of atrial fibrillation using artificial neural network for wearable devices. Math. Prob. Eng. 2020, Article ID 9159158, 6 p. (2020)
Powers, D.M.W.: Evaluation: from precision, recall and F-factor to ROC, informedness, markedness correlation. J. Mach. Learn. Technol. 2, 3763 (2011)
Lin, C.C., Yang, C.M.: Heartbeat classification using normalized RR intervals and wavelet features. In: Proceedings of the 2014 International Symposium on Computer, Consumer and Control, Taichung, Taiwan, June 2014
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, J., Ma, F., Chen, W. (2021). An Improved CNNLSTM Algorithm for Automatic Detection of Arrhythmia Based on Electrocardiogram Signal. In: Jensen, C.S., et al. Database Systems for Advanced Applications. DASFAA 2021 International Workshops. DASFAA 2021. Lecture Notes in Computer Science(), vol 12680. Springer, Cham. https://doi.org/10.1007/978-3-030-73216-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-73216-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73215-8
Online ISBN: 978-3-030-73216-5
eBook Packages: Computer ScienceComputer Science (R0)