Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parameter Adjustment of a Bio-Inspired Coordination Model for Swarm Robotics Using Evolutionary Optimisation

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12599))

Abstract

This work proposed the application of an evolutionary technique to optimise the parameters of a coordination model for swarms of robots. A genetic algorithm with standard characteristics was applied in order to find suitable parameters for the IACA-DI model (Inverted Ant Cellular Automata with Discrete pheromone diffusion and Inertial motion), which, in turn, was proposed in previous works. The IACA-DI is a model to coordinate swarms of robots based on the combination of two bio-inspired techniques: cellular automata and inverted ant system. The main purpose of the model is to carry out surveillance, exploration and foraging tasks. Experiments were performed in different configurations of environments and with different movement strategies to validate this application. Results have shown significant improvements in the model performance compared with previous empirical calibrations, granting a better understanding of the IACA-DI parameters, and allowing significant improvements to be investigated in future works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bontzorlos, T., Sirakoulis, G.C.: Bioinspired algorithm for area surveillance using autonomous robots. Int. J. Parallel Emerg. Distrib. Syst. (IJPEDS) 32(4), 368–385 (2017)

    Article  Google Scholar 

  2. Brambilla, M., Ferrante, E., et al.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  3. Byington, M.D., Bishop, B.E.: Cooperative robot swarm locomotion using genetic algorithms. In: SE Symposium on Systems Theory, pp. 252–256. IEEE (2008)

    Google Scholar 

  4. Calvo, R., Oliveira, J.R., Romero, R.A.F., Figueiredo, M.: A bioinspired coordination strategy for controlling of multiple robots in surveillance tasks. Int. J. Adv. Softw. 5, 146–165 (2012)

    Google Scholar 

  5. Falleiros, E.L.S., Calvo, R., Ishii, R.P.: PheroSLAM: a collaborative and bioinspired multi-agent system based on monocular vision. In: Gervasi, O., et al. (eds.) ICCSA 2015. LNCS, vol. 9156, pp. 71–85. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21407-8_6

    Chapter  Google Scholar 

  6. Lima, D.A., Oliveira, G.M.B.: A probabilistic cellular automata ant memory model for a swarm of foraging robots. In: International Conference on Control, Automation, Robotics and Vision, pp. 1–6. IEEE (2016)

    Google Scholar 

  7. Lima, D.A., Tinoco, C.R., Oliveira, G.M.B.: A cellular automata model with repulsive pheromone for swarm robotics in surveillance. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 312–322. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_31

    Chapter  Google Scholar 

  8. Lin, C.C., Chen, K.C., Chuang, W.J.: Motion planning using a memetic evolution algorithm for swarm robots. Int. J. Adv. Robot. Syst. 9(1), 19 (2012)

    Article  Google Scholar 

  9. Ludwig, L., Gini, M.: Robotic swarm dispersion using wireless intensity signals. In: Gini, M., Voyles, R. (eds.) Distributed Autonomous Robotic Systems, pp. 135–144. Springer, Tokyo (2006). https://doi.org/10.1007/4-431-35881-1_14

    Chapter  MATH  Google Scholar 

  10. Nakano, R.C.S., Bandala, A., Faelden, G.E., et al.: A genetic algorithm approach to swarm centroid tracking in quadrotor unmanned aerial vehicles. In: International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), pp. 1–6. IEEE (2014)

    Google Scholar 

  11. Oliveira, G.M.B., Silva, R., Amaral, L., Martins, L.G.: An evolutionary-cooperative model based on cellular automata and genetic algorithms for the navigation of robots under formation control. In: Brazilian Conference on Intelligent Systems (BRACIS), pp. 426–431. IEEE (2018)

    Google Scholar 

  12. Pandey, A., Pandey, S., Parhi, D.R.: Mobile robot navigation and obstacle avoidance techniques: a review. Int. Rob. Auto J. 2(3), 00022 (2017)

    Google Scholar 

  13. Rezk, N.M., Alkabani, Y., Bedor, H., Hammad, S.: A distributed genetic algorithm for swarm robots obstacle avoidance. In: 2014 9th International Conference on Computer Engineering & Systems (ICCES), pp. 170–174. IEEE (2014)

    Google Scholar 

  14. Saska, M., Vakula, J., Přeućil, L.: Swarms of micro aerial vehicles stabilized under a visual relative localization. In: International Conference on Robotics and Automation (ICRA), pp. 3570–3575. IEEE (2014)

    Google Scholar 

  15. Soysal, O., Bahçeci, E., Şahin, E.: Aggregation in swarm robotic systems: evolution and probabilistic control. Turk. J. Electr. Eng. Comput. Sci. 15(2), 199–225 (2007)

    Google Scholar 

  16. Tinoco, C.R., Lima, D.A., Oliveira, G.M.B.: An improved model for swarm robotics in surveillance based on cellular automata and repulsive pheromone with discrete diffusion. Int. J. Parallel Emerg. Distrib. Syst. 34, 53–77 (2017)

    Article  Google Scholar 

  17. Tinoco, C.R., Oliveira, G.M.B.: Pheromone interactions in a cellular automata-based model for surveillance robots. In: Mauri, G., El Yacoubi, S., Dennunzio, A., Nishinari, K., Manzoni, L. (eds.) ACRI 2018. LNCS, vol. 11115, pp. 154–165. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99813-8_14

    Chapter  Google Scholar 

  18. Tinoco, C.R., Oliveira, G.M.B.: Heterogeneous teams of robots using a coordinating model for surveillance task based on cellular automata and repulsive pheromone. In: Congress on Evolutionary Computation (CEC), pp. 747–754. IEEE (2019)

    Google Scholar 

  19. Vicmudo, M.P., Dadios, E.P., Vicerra, R.R.P.: Path planning of underwater swarm robots using genetic algorithm. In: International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management, pp. 1–5. IEEE (2014)

    Google Scholar 

  20. Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems. Auton. Agents Multi Agent Syst. 14(1), 5–30 (2007)

    Article  Google Scholar 

  21. Zheng, Z., Tan, Y.: Group explosion strategy for searching multiple targets using swarm robotic. In: Congress on Evolutionary Computation, pp. 821–828. IEEE (2013)

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to FAPEMIG, CNPq and CAPES support and scholarships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudiney R. Tinoco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tinoco, C.R., Vizzari, G., Oliveira, G.M.B. (2021). Parameter Adjustment of a Bio-Inspired Coordination Model for Swarm Robotics Using Evolutionary Optimisation. In: Gwizdałła, T.M., Manzoni, L., Sirakoulis, G.C., Bandini, S., Podlaski, K. (eds) Cellular Automata. ACRI 2020. Lecture Notes in Computer Science(), vol 12599. Springer, Cham. https://doi.org/10.1007/978-3-030-69480-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69480-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69479-1

  • Online ISBN: 978-3-030-69480-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics