Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Cutting Plane Method for Least Cost Influence Maximization

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2020)

Abstract

We study the least cost influence maximization problem, which has potential applications in social network analysis, as well as in other types of networks. The focus of this paper is on mixed-integer programming (MIP) techniques for the considered problem. The standard arc-based MIP formulation contains a substructure that is a relaxation of the mixed 0-1 knapsack polyhedron. We give a new exponential class of facet-defining inequalities from this substructure and an exact polynomial time separation algorithm for the inequalities. We report preliminary computational results to illustrate the effect of these inequalities.

This material is based on work supported by the AFRL Mathematical Modeling and Optimization Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. https://www.python-mip.com/

  2. Ackerman, E., Ben-Zwi, O., Wolfovitz, G.: Combinatorial model and bounds for target set selection. Theor. Comput. Sci. 411(44–46), 4017–4022 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chen, N.: On the approximability of influence in social networks. SIAM J. Discret. Math. 23(3), 1400–1415 (2009)

    Article  MathSciNet  Google Scholar 

  4. Chen, W., Lakshmanan, L.V., Castillo, C.: Information and influence propagation in social networks. Synth. Lect. Data Manag. 5(4), 1–177 (2013)

    Article  Google Scholar 

  5. Demaine, E.D., et al.: How to influence people with partial incentives. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 937–948 (2014)

    Google Scholar 

  6. Fischetti, M., Kahr, M., Leitner, M., Monaci, M., Ruthmair, M.: Least cost influence propagation in (social) networks. Math. Program. 170(1), 293–325 (2018)

    Article  MathSciNet  Google Scholar 

  7. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  8. Günneç, D., Raghavan, S., Zhang, R.: A branch-and-cut approach for the least cost influence problem on social networks. Networks 76(1), 84–105 (2020)

    Article  MathSciNet  Google Scholar 

  9. Günneç, D., Raghavan, S., Zhang, R.: Least-cost influence maximization on social networks. INFORMS J. Comput. 32(2), 289–302 (2020)

    MathSciNet  Google Scholar 

  10. Gursoy, F., Günneç, D.: Influence maximization in social networks under deterministic linear threshold model. Knowl.-Based Syst. 161, 111–123 (2018)

    Article  Google Scholar 

  11. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146 (2003)

    Google Scholar 

  12. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. Theory Comput. 11(4), 105–147 (2015)

    Article  MathSciNet  Google Scholar 

  13. Marchand, H., Wolsey, L.A.: The 0–1 knapsack problem with a single continuous variable. Math. Program. 85(1), 15–33 (1999)

    Article  MathSciNet  Google Scholar 

  14. Nannicini, G., Sartor, G., Traversi, E., Wolfler Calvo, R.: An exact algorithm for robust influence maximization. Math. Program. 183(1), 419–453 (2020)

    Article  MathSciNet  Google Scholar 

  15. Raghavan, S., Zhang, R.: A branch-and-cut approach for the weighted target set selection problem on social networks. Inf. J. Optim. 1(4), 304–322 (2019)

    MathSciNet  Google Scholar 

  16. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  17. Wu, H.H., Küçükyavuz, S.: A two-stage stochastic programming approach for influence maximization in social networks. Comput. Optim. Appl. 69(3), 563–595 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Boginski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, CL., Pasiliao, E.L., Boginski, V. (2020). A Cutting Plane Method for Least Cost Influence Maximization. In: Chellappan, S., Choo, KK.R., Phan, N. (eds) Computational Data and Social Networks. CSoNet 2020. Lecture Notes in Computer Science(), vol 12575. Springer, Cham. https://doi.org/10.1007/978-3-030-66046-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66046-8_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66045-1

  • Online ISBN: 978-3-030-66046-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics