Abstract
The success of stroke rehabilitation therapy is highly associated with patient cooperation. However, the repetitive nature of conventional therapies can frustrate patients and decrease their discipline in working out the physical therapy program. Serious games have shown promising outcomes when applied to tasks that require human engagement. This research focuses on sharing experiences and lessons learned from designing serious games using VR technology in cooperation with medical experts including rehab physicians, occupational therapists and physiotherapists to identify requirements and to evaluate the game before applying with stroke patients. The game has the objective to create an immersive environment that encourages the patient to exercise for recovery from stroke-induced disabilities. It is delicately designed to fit the stroke sufferers in Thailand, meanwhile, to integrate proper clinical physio therapeutic patterns based on the conventional therapy. Game design challenges for stroke patients and our solutions applied in the games were described. Our results of the preliminary field test revealed positive feedback on enjoyment and game features from physicians and physiotherapists. Finally, technical issues and suggestions for improvement were collected to adjust the game for the clinical trial with stroke patients in the next phase.
Supported by organization x.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aşkın, A., Atar, E., Koçyiğit, H., Tosun, A.: Effects of kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. Somatosens. Motor Res. 35(1), 25–32 (2018)
Assad, O., et al.: Motion-based games for Parkinson’s disease patients. In: Anacleto, J.C., Fels, S., Graham, N., Kapralos, B., Saif El-Nasr, M., Stanley, K. (eds.) ICEC 2011. LNCS, vol. 6972, pp. 47–58. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24500-8_6
Deterding, S., Dixon, D., Khaled, R., Nacke, L.: From game design elements to gamefulness: defining “gamification”. In: Proceedings of the 15th International Academic MindTrek Conference: Envisioning Future Media Environments, pp. 9–15 (2011)
FacebookTechnologies: Oculus rift features. https://www.oculus.com/rift/
Fullerton, T.: Game Design Workshop: A Playcentric Approach to Creating Innovative Games. CRC Press (2014)
Hicks, K., Gerling, K., Dickinson, P., Vanden Abeele, V.: Juicy game design: understanding the impact of visual embellishments on player experience. In: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, pp. 185–197 (2019)
Hung, Y.X., Huang, P.C., Chen, K.T., Chu, W.C.: What do stroke patients look for in game-based rehabilitation: a survey study. Medicine 95(11) (2016)
Hunicke, R., LeBlanc, M., Zubek, R.: MDA: a formal approach to game design and game research. In: Proceedings of the AAAI Workshop on Challenges in Game AI, vol. 4, p. 1722 (2004)
Klaphajone, J.: Rehabilitation medicine for general practitioners. Sutin Supplies Limited Partnership (2006)
Malaka, R.: How computer games can improve your health and fitness. In: Göbel, S., Wiemeyer, J. (eds.) GameDays 2014. LNCS, vol. 8395, pp. 1–7. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05972-3_1
Malaka, R., Herrlich, M., Smeddinck, J.: Anticipation in motion-based games for health. In: Nadin, M. (ed.) Anticipation and Medicine, pp. 351–363. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45142-8_22
Prachpayont, P., Teeranet, G.: Effects of wii-hab training on motor recovery and motor function of upper extremity in subacute stroke patients: a pilot randomized controlled trial. J. Thai Rehabilitat. Med. 23(2), 64–72 (2013)
Rosser, B.A., Eccleston, C.: Smartphone applications for pain management. J. Telemed. Telecare 17(6), 308–312 (2011)
Saposnik, G., et al.: Efficacy and safety of non-immersive virtual reality exercising in stroke rehabilitation (evrest): a randomised, multicentre, single-blind, controlled trial. Lancet Neurol. 15(10), 1019–1027 (2016)
Schell, J.: The Art of Game Design: A Book of Lenses. AK Peters/CRC Press, New York (2019)
Sinclair, J., Hingston, P., Masek, M.: Exergame development using the dual flow model. In: Proceedings of the Sixth Australasian Conference on Interactive Entertainment, pp. 1–7 (2009)
Smeddinck, J., Herrlich, M., Krause, M., Gerling, K., Malaka, R.: Did they really like the game?-challenges in evaluating exergames with older adults. In: CHI 2012 Workshop on Game User Research: Exploring Methodologies, Austin, TX, USA (2012)
Smeddinck, J.D., Herrlich, M., Malaka, R.: Exergames for physiotherapy and rehabilitation: a medium-term situated study of motivational aspects and impact on functional reach. In: Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, pp. 4143–4146 (2015)
Trombetta, M., Henrique, P.P.B., Brum, M.R., Colussi, E.L., De Marchi, A.C.B., Rieder, R.: Motion rehab AVE 3D: a VR-based exergame for post-stroke rehabilitation. Comput. Meth. Program. Biomed. 151, 15–20 (2017)
Weiss, P.L., Kizony, R., Feintuch, U., Katz, N.: Virtual reality in neurorehabilitation. Textb. Neural Repair Rehabilitat. 51(8), 182–197 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
Grudpan, S. et al. (2020). Virtual Reality Games for Stroke Rehabilitation: A Feasibility Study. In: Nunes, N.J., Ma, L., Wang, M., Correia, N., Pan, Z. (eds) Entertainment Computing – ICEC 2020. ICEC 2020. Lecture Notes in Computer Science(), vol 12523. Springer, Cham. https://doi.org/10.1007/978-3-030-65736-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-65736-9_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-65735-2
Online ISBN: 978-3-030-65736-9
eBook Packages: Computer ScienceComputer Science (R0)