Nothing Special   »   [go: up one dir, main page]

Skip to main content

Nash Social Welfare in Selfish and Online Load Balancing

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2020)

Abstract

In load balancing problems there is a set of clients, each wishing to select a resource from a set of permissible ones, in order to execute a certain task. Each resource has a latency function, which depends on its workload, and a client’s cost is the completion time of her chosen resource. Two fundamental variants of load balancing problems are selfish load balancing (aka. load balancing games), where clients are non-cooperative selfish players aimed at minimizing their own cost solely, and online load balancing, where clients appear online and have to be irrevocably assigned to a resource without any knowledge about future requests. We revisit both selfish and online load balancing under the objective of minimizing the Nash Social Welfare, i.e., the geometric mean of the clients’ costs. To the best of our knowledge, despite being a celebrated welfare estimator in many social contexts, the Nash Social Welfare has not been considered so far as a benchmarking quality measure in load balancing problems. We provide tight bounds on the price of anarchy of pure Nash equilibria and on the competitive ratio of the greedy algorithm under very general latency functions, including polynomial ones. For this particular class, we also prove that the greedy strategy is optimal as it matches the performance of any possible online algorithm.

This work was partially supported by the Italian MIUR PRIN 2017 Project ALGADIMAR “Algorithms, Games, and Digital Markets”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact, on the one hand, using this idea for bounding a performance ratio (e.g., the price of anarchy or the competitive ratio), one obtains a bound on the ratio between two logarithms (each one having the product of the players’ costs as argument). On the other hand, we are interested in bounding the ratio between the argument of these logarithms, and there is no direct correlation between these two ratios (notice that logarithm of the latter ratio is equal to the difference between the corresponding utilitarian social costs, and therefore it is not related to the former one).

References

  1. Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact price of anarchy for polynomial congestion games. SIAM J. Comput. 40(5), 1211–1233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S.A., Waarts, O.: On-line routing of virtual circuits with applications to load balancing and machine scheduling. J. ACM 44(3), 486–504 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Awerbuch, B., Yossi, A., Grove, E.F., Kao, M., Krishnan, P., Vitter, J.S.: Load balancing in the l\({}_{\text{p}}\) norm. In: Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pp. 383–391 (1995)

    Google Scholar 

  4. Azar, Y., Naor, J., Rom, R.: The competitiveness of on-line assignments. In: Proceedings of the Third Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms (SODA), pp. 203–210 (1992)

    Google Scholar 

  5. Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956)

    Google Scholar 

  6. Bei, X., Garg, J., Hoefer, M., Mehlhorn, K.: Earning and utility limits in fisher markets. ACM Trans. Econ. Comput. 7(2), 10:1–10:35 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: price of anarchy, universal worst-case examples, and tightness. ACM Trans. Econ. Comput. 2(4), 1–23 (2014)

    Article  MATH  Google Scholar 

  8. Bilò, V.: A unifying tool for bounding the quality of non-cooperative solutions in weighted congestion games. Theory Comput. Syst. 62(5), 1288–1317 (2018). https://doi.org/10.1007/s00224-017-9826-1

    Article  MathSciNet  MATH  Google Scholar 

  9. Bilò, V., Fanelli, A., Flammini, M., Moscardelli, L.: Performances of one-round walks in linear congestion games. Theory Comput. Syst. 49(1), 24–45 (2011). https://doi.org/10.1007/s00224-010-9309-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Bilò, V., Vinci, C.: On the impact of singleton strategies in congestion games. In: Proceedings of the 25th Annual European Symposium on Algorithms, (ESA), pp. 17:1–17:14 (2017)

    Google Scholar 

  11. Bilò, V., Vinci, C.: Dynamic taxes for polynomial congestion games. ACM Trans. Econ. Comput. 7(3), 15:1–15:36 (2019)

    Article  MathSciNet  Google Scholar 

  12. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  13. Brainard, W.C., Scarf, H.E.: How to compute equilibrium prices in 1891. CowlesFoundation Discussion Paper 1270 (2000)

    Google Scholar 

  14. Caragiannis, I.: Better bounds for online load balancing on unrelated machines. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 972–981 (2008)

    Google Scholar 

  15. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. Algorithmica 61(3), 606–637 (2011). https://doi.org/10.1007/s00453-010-9427-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Caragiannis, I., Kurokawa, D., Moulin, H., Procaccia, A.D., Shah, N., Wang, J.: The unreasonable fairness of maximum Nash welfare. In: Proceedings of the 2016 ACM Conference on Economics and Computation (EC), pp. 305–322 (2016)

    Google Scholar 

  17. Chakrabarty, D., Mehta, A., Nagarajan, V., Vazirani, V.: Fairness and optimality in congestion games. In: Proceedings of the 6th ACM Conference on Electronic Commerce (EC), pp. 52–57 (2005)

    Google Scholar 

  18. Chekuri, C., Khanna, S.: Handbook of Scheduling: Algorithms, Models, and Performance Analysis, Chap. Approximation Algorithms for Minimizing Average Weighted Completion Time. Chapman & Hall/CRC, London (2004)

    Google Scholar 

  19. Christodoulou, G., Mirrokni, V.S., Sidiropoulos, A.: Convergence and approximation in potential games. Theor. Comput. Sci. 438, 13–27 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cole, R., Gkatzelis, V.: Approximating the Nash social welfare with indivisible items. SIAM J. Comput. 47(3), 1211–1236 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. ACM Trans. Algorithms 3(1), 4:1–4:17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fleming, P.J., Wallace, J.: How not to lie with statistics: the correct way to summarize benchmark results. Commun. ACM 29(3), 218–221 (1986)

    Article  Google Scholar 

  23. Gairing, M., Schoppmann, F.: Total latency in singleton congestion games. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 381–387. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-0_42

    Chapter  Google Scholar 

  24. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45(9), 1563–1581 (1966)

    Article  MATH  Google Scholar 

  25. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: theoretical and practical results. J. ACM 34, 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  26. Horowitz, E., Sahni, S.K.: Exact and approximate algorithms for scheduling nonidentical processors. J. ACM 23, 317–327 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: a simple class of congestion games. In: Proceedings of the 20th AAAI Conference on Artificial Intelligence (AAAI), pp. 489–494 (2005)

    Google Scholar 

  28. Klimm, M., Schmand, D., Tönnis, A.: The online best reply algorithm for resource allocation problems. In: Fotakis, D., Markakis, E. (eds.) SAGT 2019. LNCS, vol. 11801, pp. 200–215. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30473-7_14

    Chapter  Google Scholar 

  29. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_38

    Chapter  Google Scholar 

  30. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990). https://doi.org/10.1007/BF01585745

    Article  MathSciNet  MATH  Google Scholar 

  31. Meyers, C.A., Schulz, A.S.: The complexity of welfare maximization in congestion games. Networks 59(2), 252–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nash, J.: The bargaining problem. Econometrica 18(2), 155–162 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pigou, A.C.: The Economics of Welfare. Macmillan and Co., London (1938)

    Google Scholar 

  34. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973). https://doi.org/10.1007/BF01737559

    Article  MathSciNet  MATH  Google Scholar 

  35. Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput. Syst. Sci. 67(2), 341–364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roughgarden, T., Tardos, E.: Bounding the inefficiency of equilibria in nonatomic congestion games. Games Econ. Behav. 47(2), 389–403 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Suri, S., Tóth, C., Zhou, Y.: Selfish load balancing and atomic congestion games. Algorithmica 47(1), 79–96 (2007). https://doi.org/10.1007/s00453-006-1211-4

    Article  MathSciNet  MATH  Google Scholar 

  39. Vinci, C.: Non-atomic one-round walks in congestion games. Theor. Comput. Sci. 764, 61–79 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Vöcking, B.: Algorithmic Game Theory, chap. Selfish Load Balancing, Cambridge (2007)

    Google Scholar 

  41. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civ. Eng. Part II 1(36), 352–362 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Vinci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bilò, V., Monaco, G., Moscardelli, L., Vinci, C. (2020). Nash Social Welfare in Selfish and Online Load Balancing. In: Chen, X., Gravin, N., Hoefer, M., Mehta, R. (eds) Web and Internet Economics. WINE 2020. Lecture Notes in Computer Science(), vol 12495. Springer, Cham. https://doi.org/10.1007/978-3-030-64946-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-64946-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-64945-6

  • Online ISBN: 978-3-030-64946-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics