Nothing Special   »   [go: up one dir, main page]

Skip to main content

Model-Driven Simulation for Performance Engineering of Kubernetes-Style Cloud Cluster Architectures

  • Conference paper
  • First Online:
Advances in Service-Oriented and Cloud Computing (ESOCC 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1115))

Included in the following conference series:

Abstract

We propose a performance engineering technique for self-adaptive container cluster management, often used in cloud environments now. We focus here on an abstract model that can be used by simulation tools to identify an optimal configuration for such a system, capable of providing reliable performance to service consumers. The aim of the model-based tool is to identify and analyse a set of rules capable of balancing resource demands for this platform. We present an executable model for a simulation environment that allows container cluster architectures to be studied. We have selected the Kubernetes cluster management platform as the target. Our models reflect the current Kubernetes platform, but we also introduce an advanced controller model going beyond current Kubernetes capabilities. We use the Palladio Eclipse plugin as the simulation environment. The outcome is a working simulator, that applied to a concrete container-based cluster architecture could be used by developers to understand and configure self-adaptive system behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arabnejad, H., Pahl, C., Jamshidi, P., Estrada, G.: A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling. In: CCGRID (2017)

    Google Scholar 

  2. CloudSim: A Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services (2018). http://www.cloudbus.org/cloudsim/

  3. El Ioini, N., Pahl, C.: A review of distributed ledger technologies. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11230, pp. 277–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02671-4_16

    Chapter  Google Scholar 

  4. El Ioini, N., Pahl, C.: Trustworthy orchestration of container based edge computing using permissioned blockchain. In: International Conference on Internet of Things: Systems, Management and Security (2018)

    Google Scholar 

  5. Fine, S., Singer, Y., Tishby, N.: The hierarchical hidden Markov model: analysis and applications. Mach. Learn. 32, 41–62 (1998)

    Article  Google Scholar 

  6. Fowley, F., Pahl, C., Jamshidi, P., Fang, D., Liu, X.: A classification and comparison framework for cloud service brokerage architectures. IEEE Trans. Cloud Comput. 6(2), 358–371 (2018)

    Article  Google Scholar 

  7. Heinrich, R., et al.: Performance engineering for microservices: research challenges and directions. In: International Conference on Performance Engineering Companion (2017)

    Google Scholar 

  8. Jamshidi, P., Pahl, C., Mendonca, N.C., Lewis, J., Tilkov, S.: Microservices: the journey so far and challenges ahead. IEEE Softw. 35(3), 24–35 (2018)

    Article  Google Scholar 

  9. Jamshidi, P., Sharifloo, A., Pahl, C., Metzger, A., Estrada, G.: Self-learning cloud controllers: fuzzy Q-learning for knowledge evolution. In: ICCAC (2015)

    Google Scholar 

  10. Jamshidi, P., Sharifloo, A., Pahl, C., Metzger, A., Estrada, G.: Fuzzy self-learning controllers for elasticity management in dynamic cloud architectures. QoSA (2016)

    Google Scholar 

  11. Jamshidi, P., Pahl, C., Mendonca, N.C.: Managing uncertainty in autonomic cloud elasticity controllers. IEEE Cloud Comput. 3(3), 50–60 (2016)

    Article  Google Scholar 

  12. Introduction to Kubernetes (2018). https://x-team.com/blog/introduction-kubernetes-architecture/

  13. Autoscaling in Kubernetes (2018). http://blog.kubernetes.io/2016/07/autoscaling-in-kubernetes.html

  14. Lim , H.C., et al.: Automated control in cloud computing: challenges and opportunities. In: Workshop Automated Control for Datacenters and Clouds (2009)

    Google Scholar 

  15. Lorido-Botran, T., Miguel-Alonso, J., Lozano, J.A.: A Review of auto-scaling techniques for elastic applications in cloud environments. J. Grid Comput. 12(4), 559–592 (2014)

    Article  Google Scholar 

  16. Medel, V., Rana, O., Banares, J.A.l., Arronategui, U.: Modelling performance & resource management in Kubernetes. In: International Conference on Utility and Cloud Computing (2016)

    Google Scholar 

  17. Pahl, C., El Ioini, N., Helmer, S., Lee, B.: An architecture pattern for trusted orchestration in IoT edge clouds. In: International Conference on Fog and Mobile Edge Computing (2018)

    Google Scholar 

  18. Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-of-the-art review. IEEE Trans. Cloud Comput. (2017)

    Google Scholar 

  19. Pahl, C., Jamshidi, P., Weyns, D.: Cloud architecture continuity: change models and change rules for sustainable cloud software architectures. J. Softw. Evol. Process. 29(2), e1849 (2017)

    Article  Google Scholar 

  20. Pahl, C., Jamshidi, P., Zimmermann, O.: Architectural principles for cloud software. ACM Trans. Internet Technol. (TOIT) 18(2), 1–23 (2018)

    Article  Google Scholar 

  21. Palladio Simulator (2018). http://www.palladio-simulator.com/about_palladio/

  22. Reussner, R.H., et al.: Modelling and Simulating Software Architecture - The Palladio Approach. MIT Press, Cambridge (2016)

    Google Scholar 

  23. Taibi, D., Lenarduzzi, V., Pahl, C.: Processes, motivations, and issues for migrating to microservices architectures: an empirical investigation. Cloud Comp. 4(5), 22–32 (2017)

    Article  Google Scholar 

  24. Taibi, D., Lenarduzzi, V., Pahl, C.: Architectural patterns for microservices: a systematic mapping study. In: International Conference on Cloud Computing and Services Science (2018)

    Google Scholar 

  25. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications in the cloud. ACM SIGCOMM Comput. Comm. Rev. 41(51), 45–52 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to the Palladio team at KIT for their support regarding the Palladio tool.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Pahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghirardini, F., Samir, A., Fronza, I., Pahl, C. (2020). Model-Driven Simulation for Performance Engineering of Kubernetes-Style Cloud Cluster Architectures. In: Fazio, M., Zimmermann, W. (eds) Advances in Service-Oriented and Cloud Computing. ESOCC 2018. Communications in Computer and Information Science, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-030-63161-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63161-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63160-4

  • Online ISBN: 978-3-030-63161-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics