Nothing Special   »   [go: up one dir, main page]

Skip to main content

File Restore Automation with Machine Learning

  • Conference paper
  • First Online:
Telematics and Computing (WITCOM 2020)

Abstract

IT storage enterprise infrastructure management and support is becoming more and more complicated. Engineers have to face everyday with technical challenges to ensure the availability and performance of the data for users and virtual instances. In addition, storage requirements are different for every single business unit and storage support teams have to deal with multivendor storage systems. Certain storage support group used to receive on their ticket queue numerous restore tasks from end users which wrongly deleted important files or folders. The high repetitiveness of restore tasks can be dangerous for the storage engineer because several restores involves larges files and folders with similar names (business naming convention), and the tediousness may lead the engineer to lower the focus and increase human error. An intelligent automation based on machine learning, capable to analyze text and perform repetitive large time consuming restore tasks has been developed to alleviate the workload of the storage support group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Docs, Overview of DFS Namespaces. https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-R2-and-2008/cc730736(v=ws.11)?redirectedfrom=MSDN. Accessed 3 Apr 2020

  2. Kassabgi, G.: machinelearnings.co. https://machinelearnings.co/text-classification-using-neural-networks-f5cd7b8765c6. Accessed 7 Apr 2020

  3. Fernandes de Mello, R.: Automatic text classification using an artificial neural network. Universidade de Sao Paulo, Sao Paulo (n.d.)

    Google Scholar 

  4. Chen, J., Pan, H., Ao, Q.: Study a text classification method based on neural network model. In: Jin, D., Lin, S. (eds.) Advances in Multimedia, Software Engineering and Computing Vol. 1, pp. 471–475. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25989-0_76

    Chapter  Google Scholar 

  5. Quinteiro-González, J.M.: Clasificación de textos en lenguaje natural usando la Wikipedia. Revista Ibérica de Sistemas e Tecnologias de Informação (2011)

    Google Scholar 

  6. Zhang, W., Tang, X., Yoshida, T.: Text classification with support vector machine and back propagation neural network. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4490, pp. 150–157. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72590-9_21

    Chapter  Google Scholar 

  7. Han, J.: Vertical domain text classification: towards understanding IT tickets using deep neural networks. In: The Thirty-Second AAAI Conference on Artificial Intelligence, pp. 8202–8203 (2018)

    Google Scholar 

  8. Kandakumar, K.: medium.com. https://medium.com/@karthikkumar_57917/it-support-ticket-classification-using-machine-learning-and-ml-model-deployment-ba694c01e416. Accessed 3 Mar 2020

  9. Goyal, P.: Deep Learning for Natural Language Processing (2018)

    Google Scholar 

  10. Arellano-Verdejo, J.: Moderate resolution imaging spectroradiometer products classification using deep learning. In: Mata-Rivera, M.F., Zagal-Flores, R., Barría-Huidobro, C. (eds.) WITCOM 2019. CCIS, vol. 1053, pp. 61–70. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33229-7_6

    Chapter  Google Scholar 

  11. Lindblad, T.: Image Processing Using Pulse-Coupled Neural Networks. Springer, Heidelberg (2013)

    Book  Google Scholar 

  12. Awange, J. (ed.): Hybrid Imaging and Visualization. CCIS. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26153-5_5

    Book  Google Scholar 

  13. Doglio, F.: REST API Development with Node.js. Apress, Uruguay (2018)

    Google Scholar 

  14. Hosmer, C.: PowerShell and Python Together (2019)

    Google Scholar 

  15. Tilborg, H.C.: Encyclopedia of Cryptography and Security. Springer, Heidelberg (2005)

    Google Scholar 

  16. Howser, G.: Simple mail transfer protocol: email. In: Howser, G. (ed.) Computer Networks and the Internet, pp. 385–417. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34496-2_22

    Chapter  Google Scholar 

  17. McBain in Loukidou, E.: Boredom in the workplace: more than monotonous tasks. Int. J. Manag. Rev. 381–405 (2009)

    Google Scholar 

  18. O’Hanlon in Loukidou, E.: Boredom in the workplace: more than monotonous tasks. Int. J. Manag. Rev. 381–405 (2009)

    Google Scholar 

  19. Loukidou, E.: Boredom in the workplace: more than monotonous tasks. Int. J. Manag. Rev. 381–405 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saúl Esquivel-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esquivel-García, S., Hernández-Uribe, Ó. (2020). File Restore Automation with Machine Learning. In: Mata-Rivera, M.F., Zagal-Flores, R., Barria-Huidobro, C. (eds) Telematics and Computing. WITCOM 2020. Communications in Computer and Information Science, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-62554-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62554-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62553-5

  • Online ISBN: 978-3-030-62554-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics