Nothing Special   »   [go: up one dir, main page]

Skip to main content

Application of the Transfer Matrix Method to Anti-reflective Coating Rendering

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

Abstract

Thin-film coating is a common practice to modify the appearance of materials. In optics for example, coating is often used on mirrors or lenses to modify their reflectance and transmittance properties. To achieve high transmittance optics or wavelength selective filters for sensors, multilayer coatings are required. Thin-film coating is an active area of research. In this paper we introduce to the rendering community the transfer matrix method to calculate the Fresnel coefficients for multilayer thin-film coating. This method, commonly used in optics, provides an easy way to calculate reflectance and transmittance coefficients for an arbitrary number of thin-film layers. Unlike previous methods [10], which relied on the infinite Airy summation, this method is based on the multiplication of \(2\times 2\) matrices which allows handling more general cases. We apply this method to simulate physically based anti-reflective coating where a single layer of thin-film coating is often not enough to obtain a good performance over the full visible spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeles, F.: Optical properties of thin absorbing films. JOSA 47(6), 473–482 (1957)

    Article  Google Scholar 

  2. Belcour, L.: Efficient rendering of layered materials using an atomic decomposition with statistical operators. ACM Trans. Graph. 37(4), 1 (2018)

    Article  Google Scholar 

  3. Belcour, L., Barla, P.: A practical extension to microfacet theory for the modeling of varying iridescence. ACM Trans. Graph. 36(4), 65 (2017)

    Article  Google Scholar 

  4. Bitterli, B.: Rendering resources (2016). https://benedikt-bitterli.me/resources/

  5. Byrnes, S.J.: Multilayer optical calculations. arXiv preprint arXiv:1603.02720 (2016)

  6. Centurioni, E.: Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44(35), 7532–7539 (2005)

    Article  Google Scholar 

  7. Cox, J.T., Hass, G., Thelen, A.: Triple-layer antireflection coatings on glass for the visible and near infrared. J. Opt. Soc. Am. 52(9), 965–969 (1962)

    Article  Google Scholar 

  8. Ershov, S., Kolchin, K., Myszkowski, K.: Rendering pearlescent appearance based on paint-composition modelling. In: Computer Graphics Forum, vol. 20, pp. 227–238. Wiley Online Library (2001)

    Google Scholar 

  9. Guo, Y., Hašan, M., Zhao, S.: Position-free monte carlo simulation for arbitrary layered bsdfs. ACM Trans. Graph. 37(6), 1–14 (2018)

    Article  Google Scholar 

  10. Hirayama, H., Kaneda, K., Yamashita, H., Monden, Y.: An accurate illumination model for objects coated with multilayer films. Comput. Graph. 25(3), 391–400 (2001)

    Article  Google Scholar 

  11. Hullin, M., Eisemann, E., Seidel, H.P., Lee, S.: Physically-based real-time lens flare rendering. ACM Trans. Graph. 30(4), 1–10 (2011). https://doi.org/10.1145/2010324.1965003

    Article  Google Scholar 

  12. Icart, I., Arquès, D.: A physically-based BRDF model for multilayer systems with uncorrelated rough boundaries. In: Peroche, B., Rushmeier, H.E. (eds.) Proceedings of the Eurographics Workshop on Rendering Techniques 2000, Brno, Czech Republic, 26–28, June 2000, pp. 353–364. Eurographics, Springer (2000). https://doi.org/10.1007/978-3-7091-6303-0_32

  13. Imura, M., Oshiro, O., Saeki, M., Manabe, Y., Chihara, K., Yasumuro, Y.: A generic real-time rendering approach for structural colors. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 95–102. Association for Computing Machinery (2009)

    Google Scholar 

  14. Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.org

  15. Jakob, W., D’Eon, E., Jakob, O., Marschner, S.: A comprehensive framework for rendering layered materials. ACM Trans. Graph. (Proc. SIGGRAPH) 33(4), 118:1–118:14 (2014)

    MATH  Google Scholar 

  16. Katsidis, C.C., Siapkas, D.I.: General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41(19), 3978–3987 (2002)

    Article  Google Scholar 

  17. Macleod, H.A.: Thin-film Optical Filters. CRC Press, Boca Raton (2017)

    Google Scholar 

  18. Mitsas, C.L., Siapkas, D.I.: Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates. Appl. Opt. 34(10), 1678–1683 (1995)

    Article  Google Scholar 

  19. Simonot, L., Hersch, R.D., Hébert, M., Mazauric, S.: Multilayer four-flux matrix model accounting for directional-diffuse light transfers. Appl. Opt. 55(1), 27–37 (2016)

    Article  Google Scholar 

  20. Smits, B.E., Meyer, G.W.: Newton’s colors: simulating interference phenomena in realistic image synthesis. In: Photorealism in Computer Graphics, pp. 185–194. Springer (1992)

    Google Scholar 

  21. Stam, J.: An illumination model for a skin layer bounded by rough surfaces. In: Rendering Techniques 2001, pp. 39–52. Springer (2001)

    Google Scholar 

  22. Sun, Y.: Rendering biological iridescences with rgb-based renderers. ACM Trans. Graph. 25(1), 100–129 (2006). https://doi.org/10.1145/1122501.1122506

    Article  Google Scholar 

  23. Sun, Y., Wang, Q.: Interference shaders of thin films. Comput. Graph. Forum (2008). https://doi.org/10.1111/j.1467-8659.2007.01110.x

    Article  MATH  Google Scholar 

  24. Thetford, A.: A method of designing three-layer anti-reflection coatings. Opt. Acta Int. J. Opt. 16(1), 37–43 (1969)

    Article  Google Scholar 

  25. Wilkie, A., Nawaz, S., Droske, M., Weidlich, A., Hanika, J.: Hero wavelength spectral sampling. In: Proceedings of the 25th Eurographics Symposium on Rendering, pp. 123–131. EGSR ’14, Eurographics Association, Goslar, DEU (2014)

    Google Scholar 

  26. Wu, F.K., Zheng, C.W.: Microfacet-based interference simulation for multilayer films. Graph. Models 78, 26–35 (2015)

    Article  Google Scholar 

  27. Xi, J.Q., et al.: Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection. Nature Photonics 1(3), 176–179 (2007)

    Article  Google Scholar 

  28. Zeltner, T., Jakob, W.: The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance. Trans. Graph. (Proc. SIGGRAPH) 37(4), 74:1–74:14 (2018). https://doi.org/10.1145/3197517.3201321

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexis Benamira or Sumanta Pattanaik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benamira, A., Pattanaik, S. (2020). Application of the Transfer Matrix Method to Anti-reflective Coating Rendering. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics