Abstract
Thin-film coating is a common practice to modify the appearance of materials. In optics for example, coating is often used on mirrors or lenses to modify their reflectance and transmittance properties. To achieve high transmittance optics or wavelength selective filters for sensors, multilayer coatings are required. Thin-film coating is an active area of research. In this paper we introduce to the rendering community the transfer matrix method to calculate the Fresnel coefficients for multilayer thin-film coating. This method, commonly used in optics, provides an easy way to calculate reflectance and transmittance coefficients for an arbitrary number of thin-film layers. Unlike previous methods [10], which relied on the infinite Airy summation, this method is based on the multiplication of \(2\times 2\) matrices which allows handling more general cases. We apply this method to simulate physically based anti-reflective coating where a single layer of thin-film coating is often not enough to obtain a good performance over the full visible spectrum.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abeles, F.: Optical properties of thin absorbing films. JOSA 47(6), 473–482 (1957)
Belcour, L.: Efficient rendering of layered materials using an atomic decomposition with statistical operators. ACM Trans. Graph. 37(4), 1 (2018)
Belcour, L., Barla, P.: A practical extension to microfacet theory for the modeling of varying iridescence. ACM Trans. Graph. 36(4), 65 (2017)
Bitterli, B.: Rendering resources (2016). https://benedikt-bitterli.me/resources/
Byrnes, S.J.: Multilayer optical calculations. arXiv preprint arXiv:1603.02720 (2016)
Centurioni, E.: Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44(35), 7532–7539 (2005)
Cox, J.T., Hass, G., Thelen, A.: Triple-layer antireflection coatings on glass for the visible and near infrared. J. Opt. Soc. Am. 52(9), 965–969 (1962)
Ershov, S., Kolchin, K., Myszkowski, K.: Rendering pearlescent appearance based on paint-composition modelling. In: Computer Graphics Forum, vol. 20, pp. 227–238. Wiley Online Library (2001)
Guo, Y., Hašan, M., Zhao, S.: Position-free monte carlo simulation for arbitrary layered bsdfs. ACM Trans. Graph. 37(6), 1–14 (2018)
Hirayama, H., Kaneda, K., Yamashita, H., Monden, Y.: An accurate illumination model for objects coated with multilayer films. Comput. Graph. 25(3), 391–400 (2001)
Hullin, M., Eisemann, E., Seidel, H.P., Lee, S.: Physically-based real-time lens flare rendering. ACM Trans. Graph. 30(4), 1–10 (2011). https://doi.org/10.1145/2010324.1965003
Icart, I., Arquès, D.: A physically-based BRDF model for multilayer systems with uncorrelated rough boundaries. In: Peroche, B., Rushmeier, H.E. (eds.) Proceedings of the Eurographics Workshop on Rendering Techniques 2000, Brno, Czech Republic, 26–28, June 2000, pp. 353–364. Eurographics, Springer (2000). https://doi.org/10.1007/978-3-7091-6303-0_32
Imura, M., Oshiro, O., Saeki, M., Manabe, Y., Chihara, K., Yasumuro, Y.: A generic real-time rendering approach for structural colors. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 95–102. Association for Computing Machinery (2009)
Jakob, W.: Mitsuba renderer (2010). http://www.mitsuba-renderer.org
Jakob, W., D’Eon, E., Jakob, O., Marschner, S.: A comprehensive framework for rendering layered materials. ACM Trans. Graph. (Proc. SIGGRAPH) 33(4), 118:1–118:14 (2014)
Katsidis, C.C., Siapkas, D.I.: General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41(19), 3978–3987 (2002)
Macleod, H.A.: Thin-film Optical Filters. CRC Press, Boca Raton (2017)
Mitsas, C.L., Siapkas, D.I.: Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates. Appl. Opt. 34(10), 1678–1683 (1995)
Simonot, L., Hersch, R.D., Hébert, M., Mazauric, S.: Multilayer four-flux matrix model accounting for directional-diffuse light transfers. Appl. Opt. 55(1), 27–37 (2016)
Smits, B.E., Meyer, G.W.: Newton’s colors: simulating interference phenomena in realistic image synthesis. In: Photorealism in Computer Graphics, pp. 185–194. Springer (1992)
Stam, J.: An illumination model for a skin layer bounded by rough surfaces. In: Rendering Techniques 2001, pp. 39–52. Springer (2001)
Sun, Y.: Rendering biological iridescences with rgb-based renderers. ACM Trans. Graph. 25(1), 100–129 (2006). https://doi.org/10.1145/1122501.1122506
Sun, Y., Wang, Q.: Interference shaders of thin films. Comput. Graph. Forum (2008). https://doi.org/10.1111/j.1467-8659.2007.01110.x
Thetford, A.: A method of designing three-layer anti-reflection coatings. Opt. Acta Int. J. Opt. 16(1), 37–43 (1969)
Wilkie, A., Nawaz, S., Droske, M., Weidlich, A., Hanika, J.: Hero wavelength spectral sampling. In: Proceedings of the 25th Eurographics Symposium on Rendering, pp. 123–131. EGSR ’14, Eurographics Association, Goslar, DEU (2014)
Wu, F.K., Zheng, C.W.: Microfacet-based interference simulation for multilayer films. Graph. Models 78, 26–35 (2015)
Xi, J.Q., et al.: Optical thin-film materials with low refractive index for broadband elimination of fresnel reflection. Nature Photonics 1(3), 176–179 (2007)
Zeltner, T., Jakob, W.: The layer laboratory: a calculus for additive and subtractive composition of anisotropic surface reflectance. Trans. Graph. (Proc. SIGGRAPH) 37(4), 74:1–74:14 (2018). https://doi.org/10.1145/3197517.3201321
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Benamira, A., Pattanaik, S. (2020). Application of the Transfer Matrix Method to Anti-reflective Coating Rendering. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-61864-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61863-6
Online ISBN: 978-3-030-61864-3
eBook Packages: Computer ScienceComputer Science (R0)