Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Cluster-Based Under-Sampling Algorithm for Class-Imbalanced Data

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2020)

Abstract

The resampling methods are among the most popular strategies to face the class imbalance problem. The objective of these methods is to compensate the imbalanced class distribution by over-sampling the minority class and/or under-sampling the majority class. In this paper, a new under-sampling method based on the DBSCAN clustering algorithm is introduced. The main idea is to remove the majority class instances that are identified as noise by DBSCAN. The proposed method is empirically compared to well-known state-of-the-art under-sampling algorithms over 25 benchmarking databases and the experimental results demonstrate the effectiveness of the new method in terms of sensitivity, specificity, and geometric mean of individual accuracies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, P., Zhao, D., Zaiane, O.: Hybrid probabilistic sampling with random subspace for imbalanced data learning. Intell. Data Anal. 18(6), 1089–1108 (2014)

    Article  Google Scholar 

  2. Chawla, N.V., Cieslak, D.A., Hall, L.O., Joshi, A.: Automatically countering imbalance and its empirical relationship to cost. Data Mining Knowl. Disc. 17(2), 225–252 (2008)

    Article  MathSciNet  Google Scholar 

  3. Dal Pozzolo, A., Caelen, O., Bontempi, G.: When is undersampling effective in unbalanced classification tasks? In: Appice, A., Rodrigues, P.P., Santos Costa, V., Soares, C., Gama, J., Jorge, A. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9284, pp. 200–215. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23528-8_13

    Chapter  Google Scholar 

  4. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Devi, D., Biswas, S., Purkayastha, B.: Redundancy-driven modified Tomek-link based undersampling: a solution to class imbalance. Pattern Recognit. Lett. 93, 3–12 (2017)

    Article  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press, Portland (1996)

    Google Scholar 

  7. Fernández, A., del Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. Int. J. Approximate Reason. 50(3), 561–577 (2009)

    Article  MATH  Google Scholar 

  8. García, V., Sánchez, J.S., Marqués, A.I., Florencia, R., Rivera, G.: Understanding the apparent superiority of over-sampling through an analysis of local information for class-imbalanced data. Exp. Syst. Appl. 158, 113026 (2019). https://doi.org/10.1016/j.eswa.2019.113026

    Article  Google Scholar 

  9. García, V., Sánchez, J.S., Mollineda, R.A.: On the effectiveness of preprocessing methods when dealing with different levels of class imbalance. Knowl.-Based Syst. 25(1), 13–21 (2012)

    Article  Google Scholar 

  10. Hart, P.: The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 14(3), 515–516 (1968)

    Article  Google Scholar 

  11. He, H., Ma, Y.: Imbalanced Learning: Foundations, Algorithms, and Applications. Wiley - IEEE Press, Piscataway (2013)

    Book  MATH  Google Scholar 

  12. Japkowicz, N., Stephen, S.: The class imbalance problem: a systematic study. Intell. Data Anal. 6(5), 429–449 (2002)

    Article  MATH  Google Scholar 

  13. Krawczyk, B.: Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5(4), 221–232 (2016)

    Article  Google Scholar 

  14. Kumar, K.A., Rangan, C.P.: Privacy preserving DBSCAN algorithm for clustering. In: Alhajj, R., Gao, H., Li, J., Li, X., Zaïane, O.R. (eds.) Advanced Data Mining and Applications, pp. 57–68. Springer, Heidelberg (2007). https://doi.org/10.1007/11811305

    Chapter  Google Scholar 

  15. Laurikkala, J.: Improving identification of difficult small classes by balancing class distribution. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 63–66. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48229-6_9

    Chapter  Google Scholar 

  16. Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S.: Clustering-based undersampling in class-imbalanced data. Inf. Sci. 409–410, 17–26 (2017)

    Article  Google Scholar 

  17. Ofek, N., Rokach, L., Stern, R., Shabtai, A.: Fast-CBUS: a fast clustering-based undersampling method for addressing the class imbalance problem. Neurocomputing 243, 88–102 (2017)

    Article  Google Scholar 

  18. Onan, A.: Consensus clustering-based undersampling approach to imbalanced learning. Sci. Programm. 2019, 5901087 (2019). Article ID 5901087

    Google Scholar 

  19. Prati, R.C., Batista, G.E., Silva, D.F.: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods. Knowl. Inf. Syst. 45, 247–270 (2015). https://doi.org/10.1007/s10115-014-0794-3

    Article  Google Scholar 

  20. Smiti, A., Elouedi, Z.: DBSCAN-GM: an improved clustering method based on Gaussian Means and DBSCAN techniques. In: Proceedings of IEEE 16th International Conference on Intelligent Engineering Systems, Lisbon, Portugal, pp. 573–578 (2012)

    Google Scholar 

  21. Tomek, I.: An experiment with the edited nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. SMC 6(6), 448–452 (1976)

    MathSciNet  MATH  Google Scholar 

  22. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. SMC 6(6), 769–772 (1976)

    MathSciNet  MATH  Google Scholar 

  23. Tsai, C.F., Lin, W.C., Hu, Y.H., Yao, G.T.: Under-sampling class imbalanced datasets by combining clustering analysis and instance selection. Inf. Sci. 477, 47–54 (2019)

    Article  Google Scholar 

  24. Verma, M.K., Xaxa, D.K., Verma, S.: DBCS: density based cluster sampling for solving imbalanced classification problem. In: Proceedings of International conference of Electronics, Communication and Aerospace Technology, Coimbatore, India, vol. 1, pp. 156–161 (2017)

    Google Scholar 

  25. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. SMC 2(3), 408–421 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yen, S.J., Lee, Y.S.: Cluster-based under-sampling approaches for imbalanced data distributions. Exp. Syst. Appl. 36(3, Part 1), 5718–5727 (2009)

    Article  Google Scholar 

  27. Yue, S.H., Li, P., Guo, J.D., Zhou, S.Q.: Using greedy algorithm: DBSCAN revisited II. J. Zhejiang Univ. - SCIENCE A 5(11), 1405–1412 (2004). https://doi.org/10.1631/jzus.2004.1405

Download references

Acknowledgment

This work was partially supported by the Universitat Jaume I under grant [UJI-B2018-49], the 5046/2020CIC UAEM project and the Mexican Science and Technology Council (CONACYT) under scholarship [702275].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Guzmán-Ponce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guzmán-Ponce, A., Valdovinos, R.M., Sánchez, J.S. (2020). A Cluster-Based Under-Sampling Algorithm for Class-Imbalanced Data. In: de la Cal, E.A., Villar Flecha, J.R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2020. Lecture Notes in Computer Science(), vol 12344. Springer, Cham. https://doi.org/10.1007/978-3-030-61705-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61705-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61704-2

  • Online ISBN: 978-3-030-61705-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics