Abstract
Clustering is a very important technique used in many fields in order to deal with large datasets. In clustering algorithms, one of the most popular approaches is based on an analysis of clusters density. Density-based algorithms include different methods but the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one of the most cited in the scientific literature. This algorithm can identify clusters of arbitrary shapes and sizes that occur in a dataset. Thus, the DBSCAN is very widely applied in various applications and has many modifications. However, there is a key issue of the right choice of its two input parameters, i.e the neighborhood radius (eps) and the MinPts. In this paper, a new method for determining the neighborhood radius (eps) and the MinPts is proposed. This method is based on finding a proper grid of cells for a dataset. Next, the grid is used to calculate the right values of these two parameters. Experimental results have been obtained for several different datasets and they confirm a very good performance of the newly proposed method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bilski, J., Smoląg, J., Żurada, J.M.: Parallel approach to the Levenberg-Marquardt learning algorithm for feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 3–14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_1
Bilski, J., Wilamowski, B.M.: Parallel Levenberg-Marquardt algorithm without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 25–39. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_3
Bradley, P., Fayyad, U.: Refining initial points for k-means clustering. In: Proceedings of the Fifteenth International Conference on Knowledge Discovery and Data Mining, pp. 9–15. AAAI Press, New York (1998)
Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)
Chen, X., Liu, W., Qui, H., Lai, J.: APSCAN: a parameter free algorithm for clustering. Pattern Recogn. Lett. 32, 973–986 (2011)
Chen, J.: Hybrid clustering algorithm based on PSO with the multidimensional asynchronism and stochastic disturbance method. J. Theor. Appl. Inform. Technol. 46, 343–440 (2012)
Chen, Y., Tang, S., Bouguila, N., Wang, C., Du, J., Li, H.: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data. Pattern Recogn. 83, 375–387 (2018)
D’Aniello, G., Gaeta, M., Loia, F., Reformat, M., Toti, D.: An environment for collective perception based on fuzzy and semantic approaches. J. Artif. Intell. Soft Comput. Res. 8(3), 191–210 (2018)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceeding of 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)
Fränti, P., Rezaei, M., Zhao, Q.: Centroid index: cluster level similarity measure. Pattern Recogn. 47(9), 3034–3045 (2014)
Hruschka, E.R., de Castro, L.N., Campello, R.J.: Evolutionary algorithms for clustering gene-expression data. In: Data Mining, Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 403–406. IEEE (2004)
Karami, A., Johansson, R.: Choosing DBSCAN parameters automatically using differential evolution. Int. J. Comput. Appl. 91, 1–11 (2014)
Lai, W., Zhou, M., Hu, F., Bian, K., Song, Q.: A new DBSCAN parameters determination method based on improved MVO. IEEE Access 7, 104085–104095 (2019)
Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)
Luchi, D., Rodrigues, A.L., Varejao, F.M.: Sampling approaches for applying DBSCAN to large datasets. Pattern Recogn. Lett. 117, 90–96 (2019)
Ferdaus, M.M., Anavatti, S.G., Matthew, A., Pratama, G., Pratama, M.: Development of C-means clustering based adaptive fuzzy controller for a flapping wing micro air vehicle. J. Artif. Intell. Soft Comput. Res. 9(2), 99–109 (2019). https://doi.org/10.2478/jaiscr-2018-0027
Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983)
Patrikainen, A., Meila, M.: Comparing subspace clusterings. IEEE Trans. Knowl. Data Eng. 18(7), 902–916 (2006)
Pei, Z., Hua, X., Han, J.: The clustering algorithm based on particle swarm optimization algorithm. In: Proceedings of the 2008 International Conference on Intelligent Computation Technology and Automation, Washington, USA, vol. 1, pp. 148–151 (2008)
Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)
Rastin, P., Matei, B., Cabanes, G., Grozavu, N., Bennani, Y.: Impact of learners’ quality and diversity in collaborative clustering. J. Artif. Intell. Soft Comput. Res. 9(2), 149–165 (2019). https://doi.org/10.2478/jaiscr-2018-0030
Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)
Rohlf, F.: Single-link clustering algorithms. In: Krishnaiah, P.R., Kanal, L.N., (eds.) Handbook of Statistics, vol. 2, pp. 267–284 (1982)
Rutkowski, T., Łapa, K., Nielek, R.: On explainable fuzzy recommenders and their performance evaluation. Int. J. Appl. Math. Comput. Sci. 29(3), 595–610 (2019). https://doi.org/10.2478/amcs-2019-0044
Rutkowski, T., Łapa, K., Jaworski, M., Nielek, R., Rutkowska, D.: On explainable flexible fuzzy recommender and its performance evaluation using the akaike information criterion. In: Gedeon, T., Wong, K.W., Lee, M. (eds.) ICONIP 2019. CCIS, vol. 1142, pp. 717–724. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36808-1_78
Sameh, A.S., Asoke, K.N.: Development of assessment criteria for clustering algorithms. Pattern Anal. Appl. 12(1), 79–98 (2009)
Shah G.H.: An improved DBSCAN, a density based clustering algorithm with parameter selection for high dimensional data sets. In: Nirma University International Engineering (NUiCONE), pp. 1–6 (2012)
Sheikholeslam, G., Chatterjee, S., Zhang, A.: WaveCluster: a wavelet-based clustering approach for spatial data in very large databases. Int. J. Very Large Data Bases 8(3–4), 289–304 (2000)
Shieh, H.-L.: Robust validity index for a modified subtractive clustering algorithm. Appl. Soft Comput. 22, 47–59 (2014)
Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. 20(3), 687–700 (2017)
Wang, W., Yang, J., Muntz, R.: STING: a statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases. (VLDB 1997), pp. 186–195 (1997)
Zalik, K.R.: An efficient k-means clustering algorithm. Pattern Recogn. Lett. 29(9), 1385–1391 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Starczewski, A., Cader, A. (2020). Grid-Based Approach to Determining Parameters of the DBSCAN Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2020. Lecture Notes in Computer Science(), vol 12415. Springer, Cham. https://doi.org/10.1007/978-3-030-61401-0_52
Download citation
DOI: https://doi.org/10.1007/978-3-030-61401-0_52
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61400-3
Online ISBN: 978-3-030-61401-0
eBook Packages: Computer ScienceComputer Science (R0)