Nothing Special   »   [go: up one dir, main page]

Skip to main content

Homogenization Algorithm Based on Incremental L2-Discrepancy Filtering for Data-Driven Modelling

  • Chapter
  • First Online:
Artificial Intelligence in Industry 4.0

Part of the book series: Studies in Computational Intelligence ((SCI,volume 928))

  • 1238 Accesses

Abstract

The themes of Industry 4.0 (the fourth industrial revolution) distinguishing from the previous three are machine to machine communication (M2M), Internet of Things (IoT) [1, 2], cloud computing [3, 4] and artificial intelligence (AI) [5]. Behind these keywords, data is as important as blood for bones and muscles. At present, decentralized control systems and large databases are becoming a standard in enterprises, where terabytes of historical operating data in time series are stored and analyzed [6, 7]. A large number of applications in the era of Industry 4.0, such as equipment performance monitoring [8], predicting [9, 10], characteristic analysis [11], status warning [12] and fault diagnosis [13,14,15], have been developed based on the operation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattern, F., Flörkemeier, C.: Vom Internet der Computer zum Internet der Dinge. Informatik-Spektrum 33(2), 107–121 (2010). https://doi.org/10.1007/s00287-010-0417-7

    Article  Google Scholar 

  2. Raji, R.S.: Smart networks for control. IEEE Spectr. 31(6), 49–55 (1994). https://doi.org/10.1109/6.284793

    Article  Google Scholar 

  3. Jasperneite, J.: Was hinter Begriffen wie Industrie 4.0 steckt. Comput. Autom. 19 (2012)

    Google Scholar 

  4. Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for implementing the strategic initiative industrie 4.0: securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion (2013)

    Google Scholar 

  5. Tesch da Silva, F.S., da Costa, C.A., Paredes Crovato, C.D., da Rosa Righi, R.: Looking at energy through the lens of Industry 4.0: A systematic literature review of concerns and challenges. Comput. Ind. Eng. 143, 106426 (2020). https://doi.org/10.1016/j.cie.2020.106426

  6. Lee, J., Ardakani, H.D., Yang, S., Bagheri, B.: Industrial big data analytics and cyber-physical systems for future maintenance and service innovation. Procedia CIRP 38, 3–7 (2015). https://doi.org/10.1016/j.procir.2015.08.026

    Article  Google Scholar 

  7. ur Rehman, M.H., Yaqoob, I., Salah, K., Imran, M., Jayaraman, P.P., Perera, C.: The role of big data analytics in industrial internet of things. Futur. Gener. Comput. Syst. 99, 247–259 (2019). https://doi.org/10.1016/j.future.2019.04.020

  8. Mörth, O., Emmanouilidis, C., Hafner, N., Schadler, M.: Cyber-physical systems for performance monitoring in production intralogistics. Comput. Ind. Eng. 142, 106333 (2020). https://doi.org/10.1016/j.cie.2020.106333

    Article  Google Scholar 

  9. Kuo, C.-J., Ting, K.-C., Chen, Y.-C., Yang, D.-L., Chen, H.-M.: Automatic machine status prediction in the era of industry 4.0: case study of machines in a spring factory. J. Syst. Architect. 81, 44–53 (2017). https://doi.org/10.1016/j.sysarc.2017.10.007

    Article  Google Scholar 

  10. Yao, L., Ge, Z.: Big data quality prediction in the process industry: a distributed parallel modeling framework. J. Process Control 68, 1–13 (2018). https://doi.org/10.1016/j.jprocont.2018.04.004

    Article  Google Scholar 

  11. Moore, K.J.: Characteristic nonlinear system identification: a data-driven approach for local nonlinear attachments. Mech. Syst. Signal Process. 131, 335–347 (2019). https://doi.org/10.1016/j.ymssp.2019.05.066

    Article  Google Scholar 

  12. Vafaei, N., Ribeiro, R.A., Camarinha-Matos, L.M.: Fuzzy early warning systems for condition based maintenance. Comput. Ind. Eng. 128, 736–746 (2019). https://doi.org/10.1016/j.cie.2018.12.056

    Article  Google Scholar 

  13. Li, C., Zhang, S., Qin, Y., Estupinan, E.: A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing 407, 121–135 (2020). https://doi.org/10.1016/j.neucom.2020.04.045

    Article  Google Scholar 

  14. Wang, Y., Wu, D., Yuan, X.: LDA-based deep transfer learning for fault diagnosis in industrial chemical processes. Comput. Chem. Eng. 140, 106964 (2020). https://doi.org/10.1016/j.compchemeng.2020.106964

    Article  Google Scholar 

  15. Hoang, D.-T., Kang, H.-J.: A survey on Deep Learning based bearing fault diagnosis. Neurocomputing 335, 327–335 (2019). https://doi.org/10.1016/j.neucom.2018.06.078

    Article  Google Scholar 

  16. Chawla, N.V.: Data mining for imbalanced datasets: an overview. Data Mining and Knowledge Discovery Handbook (pp. 875–886). Springer US (2009). https://doi.org/10.1007/978-0-387-09823-4_45

  17. He, Haibo, Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009). https://doi.org/10.1109/tkde.2008.239

    Article  Google Scholar 

  18. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004). https://doi.org/10.1145/1007730.1007735

    Article  Google Scholar 

  19. López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013). https://doi.org/10.1016/j.ins.2013.07.007

    Article  Google Scholar 

  20. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  21. Deng, X., Zhong, W., Ren, J., Zeng, D., Zhang, H.: An imbalanced data classification method based on automatic clustering under-sampling. In: IEEE 35th International Performance Computing and Communications Conference (IPCCC), pp. 1–8. Las Vegas, NV (2016). https://doi.org/10.1109/PCCC.2016.7820640

  22. Fernandez, A., Garcia, S., Herrera, F., Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018). https://doi.org/10.1613/jair.1.11192

    Article  MathSciNet  MATH  Google Scholar 

  23. Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., Zhou, Y.: A novel ensemble method for classifying imbalanced data. Pattern Recogn. 48(5), 1623–1637 (2015). https://doi.org/10.1016/j.patcog.2014.11.014

    Article  Google Scholar 

  24. Zhu, M., Xu, C., Wu, Y.-F.B.: IFME. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries - JCDL’13. Presented at the the 13th ACM/IEEE-CS joint conference (2013). https://doi.org/10.1145/2467696.2467736

  25. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. Am. Math. Soc. 67(221), 299–322 (1998). https://doi.org/10.1090/s0025-5718-98-00894-1

    Article  MathSciNet  MATH  Google Scholar 

  26. Lv, Y., Romero, C.E., Yang, T., Fang, F., Liu, J.: Typical condition library construction for the development of data-driven models in power plants. Appl. Therm. Eng. 143, 160–171 (2018). https://doi.org/10.1016/j.applthermaleng.2018.07.083

    Article  Google Scholar 

  27. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)

    Google Scholar 

  28. Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Inf. Fusion 42, 146–157 (2018). https://doi.org/10.1016/j.inffus.2017.10.006

    Article  Google Scholar 

  29. Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1) (2015). https://doi.org/10.1186/s40537-014-0007-7

  30. Zheng, M., Qian, H., Lin, S., Xiao, B., Chu, X.: Research on expert knowledge base of intelligent diagnosis based on tubing leakage of high-pressure heater in nuclear power plant. Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration, pp. 185–194. Springer, Singapore (2017)

    Google Scholar 

  31. Heo, G., Lee, S.K.: Internal leakage detection for feedwater heaters in power plants using neural networks. Expert Syst. Appl. 39(5), 5078–5086 (2012). https://doi.org/10.1016/j.eswa.2011.11.031

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Zhejiang Major Science and Technology Project (No. 2017C01082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengqi Si .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shao, Z., Si, F., Xu, Z., Guo, D. (2021). Homogenization Algorithm Based on Incremental L2-Discrepancy Filtering for Data-Driven Modelling. In: Dingli, A., Haddod, F., Klüver, C. (eds) Artificial Intelligence in Industry 4.0. Studies in Computational Intelligence, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-030-61045-6_6

Download citation

Publish with us

Policies and ethics