Abstract
The themes of Industry 4.0 (the fourth industrial revolution) distinguishing from the previous three are machine to machine communication (M2M), Internet of Things (IoT) [1, 2], cloud computing [3, 4] and artificial intelligence (AI) [5]. Behind these keywords, data is as important as blood for bones and muscles. At present, decentralized control systems and large databases are becoming a standard in enterprises, where terabytes of historical operating data in time series are stored and analyzed [6, 7]. A large number of applications in the era of Industry 4.0, such as equipment performance monitoring [8], predicting [9, 10], characteristic analysis [11], status warning [12] and fault diagnosis [13,14,15], have been developed based on the operation data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mattern, F., Flörkemeier, C.: Vom Internet der Computer zum Internet der Dinge. Informatik-Spektrum 33(2), 107–121 (2010). https://doi.org/10.1007/s00287-010-0417-7
Raji, R.S.: Smart networks for control. IEEE Spectr. 31(6), 49–55 (1994). https://doi.org/10.1109/6.284793
Jasperneite, J.: Was hinter Begriffen wie Industrie 4.0 steckt. Comput. Autom. 19 (2012)
Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recommendations for implementing the strategic initiative industrie 4.0: securing the future of German manufacturing industry; final report of the Industrie 4.0 Working Group. Forschungsunion (2013)
Tesch da Silva, F.S., da Costa, C.A., Paredes Crovato, C.D., da Rosa Righi, R.: Looking at energy through the lens of Industry 4.0: A systematic literature review of concerns and challenges. Comput. Ind. Eng. 143, 106426 (2020). https://doi.org/10.1016/j.cie.2020.106426
Lee, J., Ardakani, H.D., Yang, S., Bagheri, B.: Industrial big data analytics and cyber-physical systems for future maintenance and service innovation. Procedia CIRP 38, 3–7 (2015). https://doi.org/10.1016/j.procir.2015.08.026
ur Rehman, M.H., Yaqoob, I., Salah, K., Imran, M., Jayaraman, P.P., Perera, C.: The role of big data analytics in industrial internet of things. Futur. Gener. Comput. Syst. 99, 247–259 (2019). https://doi.org/10.1016/j.future.2019.04.020
Mörth, O., Emmanouilidis, C., Hafner, N., Schadler, M.: Cyber-physical systems for performance monitoring in production intralogistics. Comput. Ind. Eng. 142, 106333 (2020). https://doi.org/10.1016/j.cie.2020.106333
Kuo, C.-J., Ting, K.-C., Chen, Y.-C., Yang, D.-L., Chen, H.-M.: Automatic machine status prediction in the era of industry 4.0: case study of machines in a spring factory. J. Syst. Architect. 81, 44–53 (2017). https://doi.org/10.1016/j.sysarc.2017.10.007
Yao, L., Ge, Z.: Big data quality prediction in the process industry: a distributed parallel modeling framework. J. Process Control 68, 1–13 (2018). https://doi.org/10.1016/j.jprocont.2018.04.004
Moore, K.J.: Characteristic nonlinear system identification: a data-driven approach for local nonlinear attachments. Mech. Syst. Signal Process. 131, 335–347 (2019). https://doi.org/10.1016/j.ymssp.2019.05.066
Vafaei, N., Ribeiro, R.A., Camarinha-Matos, L.M.: Fuzzy early warning systems for condition based maintenance. Comput. Ind. Eng. 128, 736–746 (2019). https://doi.org/10.1016/j.cie.2018.12.056
Li, C., Zhang, S., Qin, Y., Estupinan, E.: A systematic review of deep transfer learning for machinery fault diagnosis. Neurocomputing 407, 121–135 (2020). https://doi.org/10.1016/j.neucom.2020.04.045
Wang, Y., Wu, D., Yuan, X.: LDA-based deep transfer learning for fault diagnosis in industrial chemical processes. Comput. Chem. Eng. 140, 106964 (2020). https://doi.org/10.1016/j.compchemeng.2020.106964
Hoang, D.-T., Kang, H.-J.: A survey on Deep Learning based bearing fault diagnosis. Neurocomputing 335, 327–335 (2019). https://doi.org/10.1016/j.neucom.2018.06.078
Chawla, N.V.: Data mining for imbalanced datasets: an overview. Data Mining and Knowledge Discovery Handbook (pp. 875–886). Springer US (2009). https://doi.org/10.1007/978-0-387-09823-4_45
He, Haibo, Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009). https://doi.org/10.1109/tkde.2008.239
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6(1), 20–29 (2004). https://doi.org/10.1145/1007730.1007735
López, V., Fernández, A., García, S., Palade, V., Herrera, F.: An insight into classification with imbalanced data: empirical results and current trends on using data intrinsic characteristics. Inf. Sci. 250, 113–141 (2013). https://doi.org/10.1016/j.ins.2013.07.007
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953
Deng, X., Zhong, W., Ren, J., Zeng, D., Zhang, H.: An imbalanced data classification method based on automatic clustering under-sampling. In: IEEE 35th International Performance Computing and Communications Conference (IPCCC), pp. 1–8. Las Vegas, NV (2016). https://doi.org/10.1109/PCCC.2016.7820640
Fernandez, A., Garcia, S., Herrera, F., Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018). https://doi.org/10.1613/jair.1.11192
Sun, Z., Song, Q., Zhu, X., Sun, H., Xu, B., Zhou, Y.: A novel ensemble method for classifying imbalanced data. Pattern Recogn. 48(5), 1623–1637 (2015). https://doi.org/10.1016/j.patcog.2014.11.014
Zhu, M., Xu, C., Wu, Y.-F.B.: IFME. In: Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries - JCDL’13. Presented at the the 13th ACM/IEEE-CS joint conference (2013). https://doi.org/10.1145/2467696.2467736
Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. Am. Math. Soc. 67(221), 299–322 (1998). https://doi.org/10.1090/s0025-5718-98-00894-1
Lv, Y., Romero, C.E., Yang, T., Fang, F., Liu, J.: Typical condition library construction for the development of data-driven models in power plants. Appl. Therm. Eng. 143, 160–171 (2018). https://doi.org/10.1016/j.applthermaleng.2018.07.083
Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE International Conference on Computer Vision, pp. 843–852 (2017)
Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Inf. Fusion 42, 146–157 (2018). https://doi.org/10.1016/j.inffus.2017.10.006
Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E.: Deep learning applications and challenges in big data analytics. J. Big Data 2(1) (2015). https://doi.org/10.1186/s40537-014-0007-7
Zheng, M., Qian, H., Lin, S., Xiao, B., Chu, X.: Research on expert knowledge base of intelligent diagnosis based on tubing leakage of high-pressure heater in nuclear power plant. Advanced Computational Methods in Energy, Power, Electric Vehicles, and Their Integration, pp. 185–194. Springer, Singapore (2017)
Heo, G., Lee, S.K.: Internal leakage detection for feedwater heaters in power plants using neural networks. Expert Syst. Appl. 39(5), 5078–5086 (2012). https://doi.org/10.1016/j.eswa.2011.11.031
Acknowledgements
This work was financially supported by Zhejiang Major Science and Technology Project (No. 2017C01082).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Shao, Z., Si, F., Xu, Z., Guo, D. (2021). Homogenization Algorithm Based on Incremental L2-Discrepancy Filtering for Data-Driven Modelling. In: Dingli, A., Haddod, F., Klüver, C. (eds) Artificial Intelligence in Industry 4.0. Studies in Computational Intelligence, vol 928. Springer, Cham. https://doi.org/10.1007/978-3-030-61045-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-61045-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61044-9
Online ISBN: 978-3-030-61045-6
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)