Nothing Special   »   [go: up one dir, main page]

Skip to main content

Knowledge Transfer via Dense Cross-Layer Mutual-Distillation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12360))

Included in the following conference series:

  • 4000 Accesses

Abstract

Knowledge Distillation (KD) based methods adopt the one-way Knowledge Transfer (KT) scheme in which training a lower-capacity student network is guided by a pre-trained high-capacity teacher network. Recently, Deep Mutual Learning (DML) presented a two-way KT strategy, showing that the student network can be also helpful to improve the teacher network. In this paper, we propose Dense Cross-layer Mutual-distillation (DCM), an improved two-way KT method in which the teacher and student networks are trained collaboratively from scratch. To augment knowledge representation learning, well-designed auxiliary classifiers are added to certain hidden layers of both teacher and student networks. To boost KT performance, we introduce dense bidirectional KD operations between the layers appended with classifiers. After training, all auxiliary classifiers are discarded, and thus there are no extra parameters introduced to final models. We test our method on a variety of KT tasks, showing its superiorities over related methods. Code is available at https://github.com/sundw2014/DCM.

A. Yao and D. Sun—Equal contribution.

Experiments were mostly done by Dawei Sun when he was an intern at Intel Labs China, supervised by Anbang Yao.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/facebook/fb.resnet.torch.

References

  1. Aguilar, G., Ling, Y., Zhang, Y., Yao, B., Fan, X., Guo, C.: Knowledge distillation from internal representations. In: AAAI (2020)

    Google Scholar 

  2. Ba, L.J., Caruana, R.: Do deep nets really need to be deep? In: NIPS (2014)

    Google Scholar 

  3. Batra, T., Parikh, D.: Cooperative learning with visual attributes. arXiv preprint arXiv:1705.05512 (2017)

  4. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT (1998)

    Google Scholar 

  5. Bucilǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: KDD (2006)

    Google Scholar 

  6. Chen, T., Goodfellow, I., Shlens, J.: Net2Net: accelerating learning via knowledge transfer. In: ICLR (2016)

    Google Scholar 

  7. Chen, Y., Wang, Z., Peng, Y., Zhang, Yu, G., Sun, J.: Cascaded pyramid network for multi-person pose estimation. In: CVPR (2018)

    Google Scholar 

  8. Garcia, N.C., Morerio, P., Murino, V.: Modality distillation with multiple stream networks for action recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 106–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_7

    Chapter  Google Scholar 

  9. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  10. Guo, X., Li, H., Yi, S., Ren, J., Wang, X.: Learning monocular depth by distilling cross-domain stereo networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 506–523. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_30

    Chapter  Google Scholar 

  11. Hafner, F., Bhuiyan, A., Kooij, J.F.P., Granger, E.: A cross-modal distillation network for person re-identification in RGB-depth. arXiv preprint arXiv:1810.11641 (2018)

  12. He, D., et al.: Dual learning for machine translation. In: NIPS (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  14. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  15. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Lifelong learning via progressive distillation and retrospection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 452–467. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_27

    Chapter  Google Scholar 

  16. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  17. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR (2018)

    Google Scholar 

  18. Huang, G., Chen, D., Li, T., Wu, F., van der Maaten, L., Weinberger, K.Q.: Multi-scale dense networks for resource efficient image classification. In: ICLR (2018)

    Google Scholar 

  19. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  20. Jia, S., Bruce, N.D.B.: Richer and deeper supervision network for salient object detection. arXiv preprint arXiv:1901.02425 (2018)

  21. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: network compression via factor transfer. In: NeurIPS (2018)

    Google Scholar 

  22. Kim, Y., Rush, A.M.: Sequence-level knowledge distillation. In: EMNLP (2016)

    Google Scholar 

  23. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. In: Tech Report (2009)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  25. Kundu, J.N., Lakkakula, N., Babu, R.V.: UM-Adapt: unsupervised multi-task adaptation using adversarial cross-task distillation. In: ICCV (2019)

    Google Scholar 

  26. Lan, X., Zhu, X., Gong, S.: Knowledge distillation by on-the-fly native ensemble. In: NeurIPS (2018)

    Google Scholar 

  27. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS (2015)

    Google Scholar 

  28. Lee, S.H., Kim, H.D., Song, B.C.: Self-supervised knowledge distillation using singular value decomposition. In: NeurIPS (2018)

    Google Scholar 

  29. Li, Y., Wang, N., Liu, J., Hou, X.: Demystifying neural style transfer. In: IJCAI (2016)

    Google Scholar 

  30. Li, Z., Hoiem, D.: Learning without forgetting. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 614–629. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_37

    Chapter  Google Scholar 

  31. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  32. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  33. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  34. Paszke, A., et al.: Automatic differentiation in pytorch. In: NIPS Workshops (2017)

    Google Scholar 

  35. Phuong, M., Lampert, C.H.: Distillation-based training for multi-exit architectures. In: ICCV (2019)

    Google Scholar 

  36. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 142–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_9

    Chapter  Google Scholar 

  37. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. In: ICLR (2015)

    Google Scholar 

  38. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  39. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: CVPR (2018)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  41. Song, G., Chai, W.: Collaborative learning for deep neural networks. In: NeurIPS (2018)

    Google Scholar 

  42. Sun, D., Yao, A., Zhou, A., Zhao, H.: Deeply-supervised knowledge synergy. In: CVPR (2019)

    Google Scholar 

  43. Sze, V., Chen, Y.H., Yang, T.J., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  44. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  45. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. In: ICLR (2020)

    Google Scholar 

  46. Tian, Y., Krishnan, D., Isola, P.: Contrastive representation distillation. ICLR (2020)

    Google Scholar 

  47. Wang, Z., Deng, Z., Wang, S.: Accelerating convolutional neural networks with dominant convolutional kernel and knowledge pre-regression. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 533–548. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_32

    Chapter  Google Scholar 

  48. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)

    Google Scholar 

  49. Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV (2015)

    Google Scholar 

  50. Xu, D., Ouyang, W., Wang, X., Nicu, S.: PAD-Net: multi-tasks guided prediction-and-distillation network for simultaneous depth estimation and scene parsing. In: CVPR (2018)

    Google Scholar 

  51. Yim, J., Joo, D., Bae, J., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: CVPR (2017)

    Google Scholar 

  52. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  53. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)

    Google Scholar 

  54. Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., Mori, G.: Lifelong GAN: continual learning for conditional image generation. In: ICCV (2019)

    Google Scholar 

  55. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: ICLR (2017)

    Google Scholar 

  56. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  57. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR (2018)

    Google Scholar 

  58. Zhang, Z., Zhang, X., Peng, C., Xue, X., Sun, J.: ExFuse: enhancing feature fusion for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 273–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_17

    Chapter  Google Scholar 

  59. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anbang Yao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 269 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yao, A., Sun, D. (2020). Knowledge Transfer via Dense Cross-Layer Mutual-Distillation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12360. Springer, Cham. https://doi.org/10.1007/978-3-030-58555-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58555-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58554-9

  • Online ISBN: 978-3-030-58555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics