Nothing Special   »   [go: up one dir, main page]

Skip to main content

Approximation Algorithms for Balancing Signed Graphs

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2020)

Abstract

Structural balance theory is an important theory in signed graphs. We consider the optimization problems: given a signed graph, the maximum number of edges that needed to be kept to make it balanced is called K(G). We firstly prove the computation of K(G) is NP-hard. Next we design four approximation algorithms to compute K(G).

This research is supported part by National Natural Science Foundation of China under Grant No.11901605, and by the disciplinary funding of Central University of Finance and Economics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antal, T., Krapivsky, P.L., Redner, S.: Social balance on networks: the dynamics of friendship and enmity. Phys. D 224(1–2), 130–136 (2006)

    Article  MathSciNet  Google Scholar 

  2. Cartwright, D., Harary, F.: Structural balance: a generalization of Heider’s theory. Psychol. Rev. 63(5), 277 (1956)

    Article  Google Scholar 

  3. Davis, J.A.: Structural balance, mechanical solidarity, and interpersonal relations. Am. J. Sociol. 68(4), 444–462 (1963)

    Article  Google Scholar 

  4. Easley, D., Kleinberg, J., et al.: Networks, Crowds, and Markets, vol. 8. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  5. Fritz, H., et al.: The Psychology of Interpersonal Relations. Wiley, New York (1958)

    Google Scholar 

  6. Guha, R., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and distrust, pp. 403–412 (2004)

    Google Scholar 

  7. Harary, F., et al.: On the notion of balance of a signed graph. Michigan Math. J. 2(2), 143–146 (1953)

    Article  MathSciNet  Google Scholar 

  8. Håstad, J.: Some optimal inapproximability results. J. ACM (JACM) 48(4), 798–859 (2001)

    Article  MathSciNet  Google Scholar 

  9. Heider, F.: Attitudes and cognitive organization. J. Psychol. 21(1), 107–112 (1946)

    Article  Google Scholar 

  10. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357 (2007)

    Article  MathSciNet  Google Scholar 

  11. König, D.: Akademische verlagsgesellschaft (1936)

    Google Scholar 

  12. Kunegis, J., Lommatzsch, A., Bauckhage, C.: The slashdot zoo: mining a social network with negative edges, pp. 741–750 (2009)

    Google Scholar 

  13. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Signed networks in social media, pp. 1361–1370 (2010)

    Google Scholar 

  14. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks, pp. 695–704 (2008)

    Google Scholar 

  15. Marvel, S.A., Strogatz, S.H., Kleinberg, J.M.: Energy landscape of social balance. Phys. Rev. Lett. 103(19), 198701 (2009)

    Article  Google Scholar 

  16. Trevisan, L., Sorkin, G.B., Sudan, M., Williamson, D.P.: Gadgets, approximation, and linear programming. SIAM J. Comput. 29(6), 2074–2097 (2000)

    Article  MathSciNet  Google Scholar 

  17. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2013)

    Google Scholar 

  18. Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Comb. DS8-Dec (2012)

    Google Scholar 

Download references

Acknowledge

The authors are indebted to Professor Xujin Chen, Professor Xiaodong Hu and three anonymous referees for their invaluable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzheng Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diao, Z., Tang, Z. (2020). Approximation Algorithms for Balancing Signed Graphs. In: Zhang, Z., Li, W., Du, DZ. (eds) Algorithmic Aspects in Information and Management. AAIM 2020. Lecture Notes in Computer Science(), vol 12290. Springer, Cham. https://doi.org/10.1007/978-3-030-57602-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57602-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57601-1

  • Online ISBN: 978-3-030-57602-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics