Nothing Special   »   [go: up one dir, main page]

Skip to main content

Imaging of Adenosine Receptors

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems
  • 1136 Accesses

Abstract

Adenosine is a fundamental molecule of life and a main metabolite of the energy metabolism in humans and animals. The net effect of the neuromodulator adenosine on excitable tissue is inhibitory affecting the release of classical neurotransmitters. Adenosine and its receptors play an important role in the physiology and pathophysiology of the brain as well as in other organs, particularly kidney, bowel, vascular system, and in tumors. The widely used neurostimulant caffeine exerts its effects as an antagonist at adenosine receptors. Four different types of adenosine receptors have been described in mammals which are all G-protein coupled receptors. For A1 and A2A adenosine receptors PET radioligands have been used successfully in humans and animal models whereas for the A2B and A3 subtype a suitable imaging method is still lacking. Pharmacokinetic quantification of A1 and A2A adenosine receptor densities is possible. So far, these tools revealed important insights into neurologic and psychiatric disorders, sleep physiology, and cancer. The constantly increasing amount of data on adenosine and its important role in multiple organ systems as well as in the pathophysiology of frequent diseases underscores the need for further research in the field of ligand development for adenosine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Balber T, Singer J, Berroteran-Infante N, Dumanic M, Fetty L, Fazekas-Singer J, Vraka C, Nics L, Bergmann M, Pallitsch K, Spreitzer H, Wadsak W, Hacker M, Jensen-Jarolim E, Viernstein H, Mitterhauser M (2018) Preclinical in vitro and in vivo evaluation of [(18)F]FE@SUPPY for cancer PET imaging: limitations of a xenograft model for colorectal cancer. Contrast Media Mol Imaging 2018:1269830

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barret O, Hannestad J, Alagille D, Vala C, Tavares A, Papin C, Morley T, Fowles K, Lee H, Seibyl J, Tytgat D, Laruelle M, Tamagnan G (2014) Adenosine 2A receptor occupancy by tozadenant and preladenant in rhesus monkeys. J Nucl Med 55:1712–1718

    Article  PubMed  CAS  Google Scholar 

  • Barret O, Hannestad J, Vala C, Alagille D, Tavares A, Laruelle M, Jennings D, Marek K, Russell D, Seibyl J, Tamagnan G (2015) Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors. J Nucl Med 56:586–591

    Article  PubMed  CAS  Google Scholar 

  • Bauer A, Holschbach MH, Meyer PT, Boy C, Herzog H, Olsson RA, Coenen HH, Zilles K (2003) In vivo imaging of adenosine A1 receptors in the human brain with [18F]CPFPX and positron emission tomography. NeuroImage 19:1760–1769

    Article  PubMed  Google Scholar 

  • Bauer A, Ishiwata K (2009) Adenosine receptor ligands and PET imaging of the CNS. Handb Exp Pharmacol:617–642

    Google Scholar 

  • Bauer A, Langen KJ, Bidmon H, Holschbach MH, Weber S, Olsson RA, Coenen HH, Zilles K (2005) 18F-CPFPX PET identifies changes in cerebral A1 adenosine receptor density caused by glioma invasion. J Nucl Med 46:450–454

    PubMed  CAS  Google Scholar 

  • Bier D, Holschbach MH, Wutz W, Olsson RA, Coenen HH (2006) Metabolism of the A1 adenosine receptor positron emission tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) in rodents and humans. Drug Metab Dispos 34:570–576

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ, Doder M, Osman S, Luthra SK, Hirani E, Hume S, Kase H, Kilborn J, Martindill S, Mori A (2008) Positron emission tomography analysis of [11C]KW-6002 binding to human and rat adenosine A2A receptors in the brain. Synapse 62:671–681

    Article  PubMed  CAS  Google Scholar 

  • Brooks DJ, Papapetropoulos S, Vandenhende F, Tomic D, He P, Coppell A, O'Neill G (2010) An open-label, positron emission tomography study to assess adenosine A2A brain receptor occupancy of vipadenant (BIIB014) at steady-state levels in healthy male volunteers. Clin Neuropharmacol 33:55–60

    Article  PubMed  CAS  Google Scholar 

  • Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, Borycz J, Rebola N, Goldberg SR, Mallol J, Cortes A, Canela EI, Lopez-Gimenez JF, Milligan G, Lluis C, Cunha RA, Ferre S, Franco R (2006) Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci 26:2080–2087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cristovao-Ferreira S, Navarro G, Brugarolas M, Perez-Capote K, Vaz SH, Fattorini G, Conti F, Lluis C, Ribeiro JA, McCormick PJ, Casado V, Franco R, Sebastiao AM (2011) Modulation of GABA transport by adenosine A1R-A2AR heteromers, which are coupled to both Gs- and G(i/o)-proteins. J Neurosci 31:15629–15639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding Y-S, Fowler J (2005) New-generation radiotracers for nAChR and NET. Nucl Med Biol 32:707–718

    Article  PubMed  CAS  Google Scholar 

  • Dishino DD, Welch MJ, Kilbourn MR, Raichle ME (1983) Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. J Nucl Med 24:1030–1038

    PubMed  CAS  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  PubMed  CAS  Google Scholar 

  • Elmenhorst D, Elmenhorst EM, Hennecke E, Kroll T, Matusch A, Aeschbach D, Bauer A (2017) Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. Proc Natl Acad Sci U S A 114:4243–4248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elmenhorst D, Garibotto V, Prescher A, Bauer A (2011) Adenosine A(1) receptors in human brain and transfected CHO cells: inhibition of [(3)H]CPFPX binding by adenosine and caffeine. Neurosci Lett 487:415–420

    Article  PubMed  CAS  Google Scholar 

  • Elmenhorst D, Kroll T, Wedekind F, Weisshaupt A, Beer S, Bauer A (2013) In vivo kinetic and steady-state quantification of 18F-CPFPX binding to rat cerebral A1 adenosine receptors: validation by displacement and autoradiographic experiments. J Nucl Med 54:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Elmenhorst D, Meyer PT, Matusch A, Winz OH, Bauer A (2012) Caffeine occupancy of human cerebral A1 adenosine receptors: in vivo quantification with 18F-CPFPX and PET. J Nucl Med 53:1723–1729

    Article  PubMed  CAS  Google Scholar 

  • Elmenhorst D, Meyer PT, Matusch A, Winz OH, Zilles K, Bauer A (2007a) Test-retest stability of cerebral A(1) adenosine receptor quantification using [(18)F]CPFPX and PET. Eur J Nucl Med Mol Imaging 34:1061–1070

    Article  PubMed  CAS  Google Scholar 

  • Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007b) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 27:2410–2415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elmenhorst EM, Elmenhorst D, Benderoth S, Kroll T, Bauer A, Aeschbach D (2018) Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A1 receptors. Proc Natl Acad Sci U S A 115:8009–8014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franco R, Lluis C, Canela EI, Mallol J, Agnati L, Casado V, Ciruela F, Ferre S, Fuxe K (2007) Receptor-receptor interactions involving adenosine A1 or dopamine D1 receptors and accessory proteins. J Neural Transm 114:93–104

    Article  PubMed  CAS  Google Scholar 

  • Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J (2001) International union of pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Hashimoto M, Suzuki M, Ishiwata K (2008) Adenosine A(1) receptors using 8-dicyclopropylmethyl-1-[(11)C]methyl-3-propylxanthine PET in Alzheimer’s disease. Ann Nucl Med 22:841–847

    Article  PubMed  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Sasaki T, Mori Y, Ishiwata K (2003) Imaging of adenosine A1 receptors in the human brain by positron emission tomography with [11C]MPDX. Ann Nucl Med 17:511–515

    Article  PubMed  CAS  Google Scholar 

  • Fukumitsu N, Ishii K, Kimura Y, Oda K, Sasaki T, Mori Y, Ishiwata K (2005) Adenosine A1 receptor mapping of the human brain by PET with 8-dicyclopropylmethyl-1-11C-methyl-3-propylxanthine. J Nucl Med 46:32–37

    PubMed  Google Scholar 

  • Guo M, Gao ZG, Tyler R, Stodden T, Li Y, Ramsey J, Zhao WJ, Wang GJ, Wiers CE, Fowler JS, Rice KC, Jacobson KA, Kim SW, Volkow ND (2018) Preclinical evaluation of the first adenosine A1 receptor partial agonist radioligand for positron emission tomography imaging. J Med Chem 61:9966–9975

    Article  PubMed  CAS  Google Scholar 

  • Haeusler D, Kuntner C, Nics L, Savli M, Zeilinger M, Wanek T, Karagiannis P, Lanzenberger RR, Langer O, Shanab K, Spreitzer H, Wadsak W, Hacker M, Mitterhauser M (2015) [18F]FE@SUPPY: a suitable PET tracer for the adenosine A3 receptor? An in vivo study in rodents. Eur J Nucl Med Mol Imaging 42:741–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Haeusler D, Nics L, Mien LK, Ungersboeck J, Lanzenberger RR, Shanab K, Spreitzerf H, Sindelar KM, Viernstein H, Wagner KH, Dudczak R, Kletter K, Wadsak W, Mitterhauser M (2010) [18F]FE@SUPPY and [18F]FE@SUPPY:2--metabolic considerations. Nucl Med Biol 37:421–426

    Article  PubMed  CAS  Google Scholar 

  • Halldin C, Gulyas B, Langer O, Farde L (2001) Brain radioligands--state of the art and new trends. Q J Nucl Med 45:139–152

    PubMed  CAS  Google Scholar 

  • Hayashi S, Inaji M, Nariai T, Oda K, Sakata M, Toyohara J, Ishii K, Ishiwata K, Maehara T (2018) Increased binding potential of brain adenosine A1 receptor in chronic stages of patients with diffuse axonal injury measured with [1-methyl-(11)C] 8-dicyclopropylmethyl-1-methyl-3-propylxanthine positron emission tomography imaging. J Neurotrauma 35:25–31

    Article  PubMed  Google Scholar 

  • Heinonen I, Nesterov SV, Liukko K, Kemppainen J, Nagren K, Luotolahti M, Virsu P, Oikonen V, Nuutila P, Kujala UM, Kainulainen H, Boushel R, Knuuti J, Kalliokoski KK (2008) Myocardial blood flow and adenosine A2A receptor density in endurance athletes and untrained men. J Physiol 586:5193–5202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herzog H, Elmenhorst D, Winz O, Bauer A (2008) Biodistribution and radiation dosimetry of the A1 adenosine receptor ligand 18F-CPFPX determined from human whole-body PET. Eur J Nucl Med Mol Imaging 35:1499–1506

    Article  PubMed  CAS  Google Scholar 

  • Hess S (2001) Recent advances in adenosine receptor antagonist research. Expert Opin Ther Pat 11:1533–1561

    Article  CAS  Google Scholar 

  • Hirani E, Gillies J, Karasawa A, Shimada J, Kase H, Opacka-Juffry J, Osman S, Luthra SK, Hume SP, Brooks DJ (2001) Evaluation of [4-O-methyl-(11)C]KW-6002 as a potential PET ligand for mapping central adenosine A(2A) receptors in rats. Synapse 42:164–176

    Article  PubMed  CAS  Google Scholar 

  • Hohoff C, Garibotto V, Elmenhorst D, Baffa A, Kroll T, Hoffmann A, Schwarte K, Zhang W, Arolt V, Deckert J, Bauer A (2014) Association of adenosine receptor gene polymorphisms and in vivo adenosine A1 receptor binding in the human brain. Neuropsychopharmacology 39:2989–2999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holschbach M, Müller CE, Wutz W, Schüller M, Coenen HH (2000) C-11 Markierung und erste ex vivo Evaluierung des Adenosin A2A Rezeptorliganden MSX-2 an NMRI Mäusen. Nuklearmedizin 39:P154

    Google Scholar 

  • Holschbach MH, Bier D, Sihver W, Schulze A, Neumaier B (2017) Synthesis and pharmacological evaluation of identified and putative metabolites of the A1 adenosine receptor antagonist 8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine (CPFPX). ChemMedChem 12:770–784

    Article  PubMed  CAS  Google Scholar 

  • Holschbach MH, Olsson RA, Bier D, Wutz W, Sihver W, Schuller M, Palm B, Coenen HH (2002) Synthesis and evaluation of no-carrier-added 8-cyclopentyl-3-(3-[(18)F]fluoropropyl)-1-propylxanthine ([(18)F]CPFPX): a potent and selective A(1)-adenosine receptor antagonist for in vivo imaging. J Med Chem 45:5150–5156

    Article  PubMed  CAS  Google Scholar 

  • Holschbach MH, Bier D, Wutz W, Willbold S, Olsson RA (2009) Synthesis of the main metabolite in human blood of the A1 adenosine receptor ligand [18F]CPFPX. Org Lett 11:4266–4269

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi K, Miura Y, Wagatsuma K, Toyohara J, Ishiwata K, Ishii K (2018) Occupancy of adenosine A2A receptors by istradefylline in patients with Parkinson's disease using (11)C-preladenant PET. Neuropharmacology 143:106–112

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Furuta R, Shimada J, Ishii S, Endo K, Suzuki F, Senda M (1995) Synthesis and preliminary evaluation of [11C]KF15372, a selective adenosine A1 antagonist. Appl Radiat Isot 46:1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Kawamura K, Yanai K, Hendrikse NH (2007a) In vivo evaluation of P-glycoprotein modulation of 8 PET radioligands used clinically. J Nucl Med 48:81–87

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Kimura Y, de Vries J, Erik F, Elsinga PH (2007b) PET tracers for mapping adenosine receptors as probes for diagnosis of CNS disorders. CNS Agents Med Chem (Formerly Current Medicinal Chemistry-Central Nervous System Agents) 7(1):57–77

    CAS  Google Scholar 

  • Ishiwata K, Mishina M, Kimura Y, Oda K, Sasaki T, Ishii K (2005) First visualization of adenosine A(2A) receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse 55:133–136

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Mizuno M, Kimura Y, Kawamura K, Oda K, Sasaki T, Nakamura Y, Muraoka I, Ishii K (2004) Potential of [11C]TMSX for the evaluation of adenosine A2A receptors in the skeletal muscle by positron emission tomography. Nucl Med Biol 31:949–956

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Noguchi J, Toyama H, Sakiyama Y, Koike N, Ishii S, Oda K, Endo K, Suzuki F, Senda M (1996) Synthesis and preliminary evaluation of [11C]KF17837, a selective adenosine A2A antagonist. Appl Radiat Isot 47:507–511

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Noguchi J, Wakabayashi S, Shimada J, Ogi N, Nariai T, Tanaka A, Endo K, Suzuki F, Senda M (2000a) 11C-labeled KF18446: a potential central nervous system adenosine A2a receptor ligand. J Nucl Med 41:345–354

    PubMed  CAS  Google Scholar 

  • Ishiwata K, Ogi N, Shimada J, Nonaka H, Tanaka A, Suzuki F, Senda M (2000b) Further characterization of a CNS adenosine A2a receptor ligand [11C]KF18446 with in vitro autoradiography and in vivo tissue uptake. Ann Nucl Med 14:81–89

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Ogi N, Shimada J, Wang W, Ishii K, Tanaka A, Suzuki F, Senda M (2000c) Search for PET probes for imaging the globus pallidus studied with rat brain ex vivo autoradiography. Ann Nucl Med 14:461–466

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Shimada J, Wang WF, Harakawa H, Ishii S, Kiyosawa M, Suzuki F, Senda M (2000d) Evaluation of iodinated and brominated [11C]styrylxanthine derivatives as in vivo radioligands mapping adenosine A2A receptor in the central nervous system. Ann Nucl Med 14:247–253

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata K, Kawamura K, Kimura Y, Oda K, Ishii K (2003) Potential of an adenosine A2A receptor antagonist [11C]TMSX for myocardial imaging by positron emission tomography: a first human study. Ann Nucl Med 17:457–462

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA (2009) Introduction to adenosine receptors as therapeutic targets. Handb Exp Pharmacol 193:1–24. https://doi.org/10.1007/978-3-540-89615-9_1

    Article  CAS  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalla RV, Zablocki J, Tabrizi MA, Baraldi PG (2009) Recent developments in A2B adenosine receptor ligands. Handb Exp Pharmacol 193:99–122

    Article  CAS  Google Scholar 

  • Khanapur S, Av W, Ishiwata K, Leenders KL, Dierckx RA, Elsinga PH (2014b) Adenosine A(2A) receptor antagonists as Positron Emission Tomography (PET) tracers. Curr Med Chem 21:312–328

    Article  PubMed  CAS  Google Scholar 

  • Khanapur S, Paul S, Shah A, Vatakuti S, Koole MJ, Zijlma R, Dierckx RA, Luurtsema G, Garg P, van Waarde A, Elsinga PH (2014a) Development of [18F]-labeled pyrazolo[4,3-e]-1,2,4- triazolo[1,5-c]pyrimidine (SCH442416) analogs for the imaging of cerebral adenosine A2A receptors with positron emission tomography. J Med Chem 57:6765–6780

    Article  PubMed  CAS  Google Scholar 

  • Khanapur S, van Waarde A, Dierckx RA, Elsinga PH, Koole MJ (2017) Preclinical evaluation and quantification of (18)F-fluoroethyl and (18)F-fluoropropyl analogs of SCH442416 as radioligands for PET imaging of the adenosine A2A receptor in rat brain. J Nucl Med 58:466–472

    Article  PubMed  CAS  Google Scholar 

  • Kiesewetter DO, Lang L, Ma Y, Bhattacharjee AK, Gao ZG, Joshi BV, Melman A, de Castro S, Jacobson KA (2009) Synthesis and characterization of [76Br]-labeled high-affinity A3 adenosine receptor ligands for positron emission tomography. Nucl Med Biol 36:3–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimura Y, Ishii K, Fukumitsu N, Oda K, Sasaki T, Kawamura K, Ishiwata K (2004) Quantitative analysis of adenosine A1 receptors in human brain using positron emission tomography and [1-methyl-11C]8-dicyclopropylmethyl-1-methyl-3-propylxanthine. Nucl Med Biol 31:975–981

    Article  PubMed  CAS  Google Scholar 

  • Kreft S, Bier D, Holschbach MH, Schulze A, Coenen HH (2017) New potent A1 adenosine receptor radioligands for positron emission tomography. Nucl Med Biol 44:69–77

    Article  PubMed  CAS  Google Scholar 

  • Kroll T, Elmenhorst D, Weisshaupt A, Beer S, Bauer A (2014) Reproducibility of non-invasive A adenosine receptor quantification in the rat brain using [18F]CPFPX and Positron Emission Tomography. Mol Imaging Biol 16(5):699–709

    Article  PubMed  Google Scholar 

  • Lahesmaa M, Oikonen V, Helin S, Luoto P, Din MU, Pfeifer A, Nuutila P, Virtanen KA (2019) Regulation of human brown adipose tissue by adenosine and A2A receptors—studies with [(15)O]H2O and [(11)C]TMSX PET/CT. Eur J Nucl Med Mol Imaging 46:743–750

    Article  PubMed  CAS  Google Scholar 

  • Li J, Hong X, Li G, Conti PS, Zhang X, Chen K (2019) PET imaging of adenosine receptors in diseases. Curr Top Med Chem 19(16):1445–1463

    Article  PubMed  CAS  Google Scholar 

  • Lindemann M, Hinz S, Deuther-Conrad W, Namasivayam V, Dukic-Stefanovic S, Teodoro R, Toussaint M, Kranz M, Juhl C, Steinbach J, Brust P, Muller CE, Wenzel B (2018) Radiosynthesis and in vivo evaluation of a fluorine-18 labeled pyrazine based radioligand for PET imaging of the adenosine A2B receptor. Bioorg Med Chem 26:4650–4663

    Article  PubMed  CAS  Google Scholar 

  • Lowe PT, Dall'Angelo S, Mulder-Krieger T, IJzerman AP, Zanda M, O’Hagan D (2017) a new class of fluorinated A2A adenosine receptor agonist with application to last-step enzymatic [(18)F]fluorination for PET imaging. Chembiochem 18:2156–2164

    Article  PubMed  CAS  Google Scholar 

  • Marian T, Boros I, Lengyel Z, Balkay L, Horvath G, Emri M, Sarkadi E, Szentmiklosi AJ, Fekete I, Tron L (1999) Preparation and primary evaluation of [11C]CSC as a possible tracer for mapping adenosine A2A receptors by PET. Appl Radiat Isot 50:887–893

    Article  PubMed  CAS  Google Scholar 

  • Mason NS, Mathis CA (2003) Positron emission tomography radiochemistry. Neuroimaging Clin N Am 13:671–687

    Article  PubMed  Google Scholar 

  • Matsuya T, Takamatsu H, Murakami Y, Noda A, Ichise R, Awaga Y, Nishimura S (2005) Synthesis and evaluation of [(11)C]FR194921 as a nonxanthine-type PET tracer for adenosine A(1) receptors in the brain. Nucl Med Biol 32:837–844

    Article  PubMed  CAS  Google Scholar 

  • Matusch A, Meyer PT, Bier D, Holschbach MH, Woitalla D, Elmenhorst D, Winz OH, Zilles K, Bauer A (2006) Metabolism of the A(1) adenosine receptor PET ligand [(18)F]CPFPX by CYP1A2: implications for bolus/infusion PET studies. Nucl Med Biol 33:891–898

    Article  PubMed  CAS  Google Scholar 

  • Matusch A, Saft C, Elmenhorst D, Kraus PH, Gold R, Hartung HP, Bauer A (2014) Cross sectional PET study of cerebral adenosine A(1) receptors in premanifest and manifest Huntington's disease. Eur J Nucl Med Mol Imaging 41:1210–1220

    Article  PubMed  CAS  Google Scholar 

  • Meyer PT, Bier D, Holschbach MH, Boy C, Olsson RA, Coenen HH, Zilles K, Bauer A (2004) Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET. J Cereb Blood Flow Metab 24:323–333

    Article  PubMed  CAS  Google Scholar 

  • Meyer PT, Bier D, Holschbach MH, Cremer M, Tellmann L, Bauer A (2003) Image of the month. In vivo imaging of rat brain A1 adenosine receptor occupancy by caffeine. Eur J Nucl Med Mol Imaging 30:1440

    Article  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Bier D, Holschbach MH, Matusch A, Coenen HH, Zilles K, Bauer A (2005a) Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. NeuroImage 24:1192–1204

    Article  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Boy C, Winz O, Matusch A, Zilles K, Bauer A (2006c) Effect of aging on cerebral A(1) adenosine receptors: a [(18)F]CPFPX PET study in humans. Neurobiol Aging 28:1914–1924

    Article  PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A (2006a) 18F-CPFPX PET: on the generation of parametric images and the effect of scan duration. J Nucl Med 47:200–207

    PubMed  Google Scholar 

  • Meyer PT, Elmenhorst D, Zilles K, Bauer A (2005b) Simplified quantification of cerebral A1 adenosine receptors using [18F]CPFPX and PET: analyses based on venous blood sampling. Synapse 55:212–223

    Article  PubMed  CAS  Google Scholar 

  • Meyer PT, Elmenhorst D, Matusch A, Winz O, Zilles K, Bauer A (2006b) A1 adenosine receptor PET using [18F]CPFPX: displacement studies in humans. NeuroImage 32:1100–1105

    Article  PubMed  Google Scholar 

  • Mishina M, Ishii K, Kimura Y, Suzuki M, Kitamura S, Ishibashi K, Sakata M, Oda K, Kobayashi S, Kimura K, Ishiwata K (2017a) Adenosine A1 receptors measured with (11) C-MPDX PET in early Parkinson’s disease. Synapse 71(8):e21979

    Article  Google Scholar 

  • Mishina M, Ishiwata K (2014) Adenosine receptor PET imaging in human brain. Int Rev Neurobiol 119:51–69

    Article  PubMed  Google Scholar 

  • Mishina M, Ishiwata K, Kimura Y, Naganawa M, Oda K, Kobayashi S, Katayama Y, Ishii K (2007) Evaluation of distribution of adenosine A(2A) receptors in normal human brain measured with [C-11]TMSX PET. Synapse 61:778–784

    Article  PubMed  CAS  Google Scholar 

  • Mishina M, Ishiwata K, Naganawa M, Kimura Y, Kitamura S, Suzuki M, Hashimoto M, Ishibashi K, Oda K, Sakata M, Hamamoto M, Kobayashi S, Katayama Y, Ishii K (2011) Adenosine A(2A) receptors measured with [C]TMSX PET in the striata of Parkinson's disease patients. PLoS One 6:e17338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishina M, Kimura Y, Naganawa M, Ishii K, Oda K, Sakata M, Toyohara J, Kobayashi S, Katayama Y, Ishiwata K (2012) Differential effects of age on human striatal adenosine A(1) and A(2A) receptors. Synapse 66:832–839

    Article  PubMed  CAS  Google Scholar 

  • Mishina M, Kimura Y, Sakata M, Ishii K, Oda K, Toyohara J, Kimura K, Ishiwata K (2017b) Age-Related Decrease in Male Extra-Striatal Adenosine A1 Receptors Measured Using (11)C-MPDX PET. Front Pharmacol 8:903

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizuno M, Kimura Y, Tokizawa K, Ishii K, Oda K, Sasaki T, Nakamura Y, Muraoka I, Ishiwata K (2005) Greater adenosine A(2A) receptor densities in cardiac and skeletal muscle in endurance-trained men: a [11C]TMSX PET study. Nucl Med Biol 32:831–836

    Article  PubMed  CAS  Google Scholar 

  • Moerlein SM, Laufer P, Stocklin G (1985) Effect of lipophilicity on the in vivo localization of radiolabelled spiperone analogues. Int J Nucl Med Biol 12:353–356

    Article  PubMed  CAS  Google Scholar 

  • Moresco RM, Todde S, Belloli S, Simonelli P, Panzacchi A, Rigamonti M, Galli-Kienle M, Fazio F (2005) In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. Eur J Nucl Med Mol Imaging 32:405–413

    Article  PubMed  CAS  Google Scholar 

  • Nabbi-Schroeter D, Elmenhorst D, Oskamp A, Laskowski S, Bauer A, Kroll T (2018) Effects of long-term caffeine consumption on the adenosine A1 receptor in the rat brain: an in vivo PET Study with [(18)F]CPFPX. Mol Imaging Biol 20:284–291

    Article  PubMed  CAS  Google Scholar 

  • Naganawa M, Kimura Y, Mishina M, Manabe Y, Chihara K, Oda K, Ishii K, Ishiwata K (2007) Quantification of adenosine A2A receptors in the human brain using [11C]TMSX and positron emission tomography. Eur J Nucl Med Mol Imaging 34:679–687

    Article  PubMed  CAS  Google Scholar 

  • Naganawa M, Kimura Y, Yano J, Mishina M, Yanagisawa M, Ishii K, Oda K, Ishiwata K (2008) Robust estimation of the arterial input function for Logan plots using an intersectional searching algorithm and clustering in positron emission tomography for neuroreceptor imaging. NeuroImage 40:26–34

    Article  PubMed  Google Scholar 

  • Naganawa M, Mishina M, Sakata M, Oda K, Hiura M, Ishii K, Ishiwata K (2014) Test-retest variability of adenosine A2A binding in the human brain with (11)C-TMSX and PET. EJNMMI Res 4:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Nariai T, Shimada Y, Ishiwata K, Nagaoka T, Shimada J, Kuroiwa T, Ono K, Ohno K, Hirakawa K, Senda M (2003) PET imaging of adenosine A(1) receptors with (11)C-MPDX as an indicator of severe cerebral ischemic insult. J Nucl Med 44:1839–1844

    PubMed  CAS  Google Scholar 

  • Noguchi J, Ishiwata K, Furuta R, Simada J, Kiyosawa M, Ishii S, Endo K, Suzuki F, Senda M (1997) Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. Nucl Med Biol 24:53–59

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Stiles GL (1995) Adenosine receptors. Neuropharmacology 34:683–694

    Article  PubMed  CAS  Google Scholar 

  • Paul S, Elsinga PH, Ishiwata K, Dierckx RA, van Waarde A (2011a) Adenosine A(1) receptors in the central nervous system: their functions in health and disease, and possible elucidation by PET imaging. Curr Med Chem 18:4820–4835

    Article  PubMed  CAS  Google Scholar 

  • Paul S, Khanapur S, Boersma W, Sijbesma JW, Ishiwata K, Elsinga PH, Meerlo P, Doorduin J, Dierckx RA, van Waarde A (2014) Cerebral adenosine A(1) receptors are upregulated in rodent encephalitis. NeuroImage 92:83–89

    Google Scholar 

  • Paul S, Khanapur S, Rybczynska AA, Kwizera C, Sijbesma JW, Ishiwata K, Willemsen AT, Elsinga PH, Dierckx RA, van Waarde A (2011b) Small-animal PET study of adenosine A(1) receptors in rat brain: blocking receptors and raising extracellular adenosine. J Nucl Med 52:1293–1300

    Article  PubMed  Google Scholar 

  • Paul S, Khanapur S, Sijbesma JW, Ishiwata K, Elsinga PH, Meerlo P, Dierckx RA, van Waarde A (2014b) Use of 11C-MPDX and PET to study adenosine A1 receptor occupancy by nonradioactive agonists and antagonists. J Nucl Med 55:315–320

    Article  PubMed  CAS  Google Scholar 

  • Petroni D, Giacomelli C, Taliani S, Barresi E, Robello M, Daniele S, Bartoli A, Burchielli S, Pardini S, Salvadori PA, Da Settimo F, Martini C, Trincavelli ML, Menichetti L (2016) Toward PET imaging of A2B adenosine receptors: a carbon-11 labeled triazinobenzimidazole tracer: Synthesis and imaging of a new A2B PET tracer. Nucl Med Biol 43:309–317

    Article  PubMed  CAS  Google Scholar 

  • Poucher SM, Keddie JR, Singh P, Stoggall SM, Caulkett PW, Jones G, Coll MG (1995) The in vitro pharmacology of ZM 241385, a potent, non-xanthine A2a selective adenosine receptor antagonist. Br J Pharmacol 115:1096–1102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramlackhansingh AF, Bose SK, Ahmed I, Turkheimer FE, Pavese N, Brooks DJ (2011) Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. Neurology 76:1811–1816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rissanen E, Tuisku J, Luoto P, Arponen E, Johansson J, Oikonen V, Parkkola R, Airas L, Rinne JO (2015) Automated reference region extraction and population-based input function for brain [(11)C]TMSX PET image analyses. J Cereb Blood Flow Metab 35:157–165

    Article  PubMed  CAS  Google Scholar 

  • Sakata M, Ishibashi K, Imai M, Wagatsuma K, Ishii K, Zhou X, de Vries EFJ, Elsinga PH, Ishiwata K, Toyohara J (2017) Initial evaluation of an adenosine A2A receptor ligand, (11)C-preladenant, in healthy human subjects. J Nucl Med 58:1464–1470

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Bier D, Bauer A, Neumaier B, Holschbach M (2019a) Influence of incubation conditions on microsomal metabolism of xanthine-derived A1 adenosine receptor ligands. J Pharmacol Toxicol Methods 95:16–26

    Article  PubMed  CAS  Google Scholar 

  • Schneider D, Oskamp A, Holschbach M, Neumaier B, Bauer A, Bier D (2019b) Relevance of in vitro metabolism models to PET radiotracer development: prediction of in vivo clearance in rats from microsomal stability data. Pharmaceuticals (Basel) 12

    Google Scholar 

  • Sihver W, Bier D, Holschbach MH, Schulze A, Wutz W, Olsson RA, Coenen HH (2004) Binding of tritiated and radioiodinated ZM241,385 to brain A2A adenosine receptors. Nucl Med Biol 31:173–177

    Article  PubMed  CAS  Google Scholar 

  • Sihver W, Holschbach MH, Bier D, Wutz W, Schulze A, Olsson RA, Coenen HH (2003) Evaluation of radioiodinated 8-Cyclopentyl-3-[(E)-3-iodoprop-2-en-1-yl]-1-propylxanthine ([*I]CPIPX) as a new potential A1 adenosine receptor antagonist for SPECT. Nucl Med Biol 30:661–668

    Article  PubMed  CAS  Google Scholar 

  • Sijbesma JW, Zhou X, Vallez Garcia D, Houwertjes MC, Doorduin J, Kwizera C, Maas B, Meerlo P, Dierckx RA, Slart RH, Elsinga PH, van Waarde A (2016) Novel approach to repeated arterial blood sampling in small animal PET: application in a test-retest study with the adenosine A1 receptor ligand [(11)C]MPDX. Mol Imaging Biol 18:715–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tavares AADS, Batis J, Barret O, Alagille D, Vala C, Kudej G, Koren A, Cosgrove KP, Nice K, Kordower JH, Seibyl J, Tamagnan GD (2013) In vivo evaluation of [(123)I]MNI-420: a novel single photon emission computed tomography radiotracer for imaging of adenosine 2A receptors in brain. Nucl Med Biol 40:403–409

    Article  PubMed  CAS  Google Scholar 

  • Todde S, Moresco RM, Simonelli P, Baraldi PG, Cacciari B, Spalluto G, Varani K, Monopoli A, Matarrese M, Carpinelli A, Magni F, Kienle MG, Fazio F (2000) Design, radiosynthesis, and biodistribution of a new potent and selective ligand for in vivo imaging of the adenosine A(2A) receptor system using positron emission tomography. J Med Chem 43:4359–4362

    Article  PubMed  CAS  Google Scholar 

  • Vala C, Morley TJ, Zhang X, Papin C, Tavares AA, Lee HS, Constantinescu C, Barret O, Carroll VM, Baldwin RM, Tamagnan GD, Alagille D (2016) Synthesis and in vivo evaluation of Fluorine-18 and Iodine-123 Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine derivatives as PET and SPECT radiotracers for mapping A2A receptors. ChemMedChem 11:1936–1943

    Article  PubMed  CAS  Google Scholar 

  • van Waarde A, Rajo D, Zhou X, Khanapur S, Tsukada H, Ishiwata K, Luurtsema G, de Vries EFJ, Elsinga PH (2018) Potential Therapeutic applications of adenosine A2A receptor ligands and opportunities for A2A receptor imaging. Med Res Rev 38:5–56

    Article  PubMed  Google Scholar 

  • Vuorimaa, A., E. Rissanen, and L. Airas. 2017. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neurodegenerative disease, Contrast Media Mol Imaging, 2017:6975841

    Google Scholar 

  • Wadsak W, Mien LK, Shanab K, Ettlinger DE, Haeusler D, Sindelar K, Lanzenberger RR, Spreitzer H, Viernstein H, Keppler BK, Dudczak R, Kletter K, Mitterhauser M (2008) Preparation and first evaluation of [(18)F]FE@SUPPY: a new PET tracer for the adenosine A(3) receptor. Nucl Med Biol 35:61–66

    Article  PubMed  CAS  Google Scholar 

  • Wang WF, Ishiwata K, Nonaka H, Ishii S, Kiyosawa M, Shimada J, Suzuki F, Senda M (2000) Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A(2A) receptors with positron emission tomography. Nucl Med Biol 27:541–546

    Article  PubMed  CAS  Google Scholar 

  • Zeitzer JM, Morales-Villagran A, Maidment NT, Behnke EJ, Ackerson LC, Lopez-Rodriguez F, Fried I, Engel J, Wilson CL (2006) Extracellular adenosine in the human brain during sleep and sleep deprivation: an in vivo microdialysis study. Sleep 29:455–461

    Article  PubMed  Google Scholar 

  • Zhou X, Doorduin J, Elsinga PH, Dierckx R, de Vries EFJ, Casteels C (2017a) Altered adenosine 2A and dopamine D2 receptor availability in the 6-hydroxydopamine-treated rats with and without levodopa-induced dyskinesia. NeuroImage 157:209–218

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Elsinga PH, Khanapur S, Dierckx RA, de Vries EF, de Jong JR (2017b) Radiation dosimetry of a novel adenosine A2A receptor radioligand [(11)C]preladenant based on PET/CT imaging and ex vivo biodistribution in rats. Mol Imaging Biol 19:289–297

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Khanapur S, de Jong JR, Willemsen AT, Dierckx RA, Elsinga PH, de Vries EF (2017c) In vivo evaluation of [(11)C]preladenant positron emission tomography for quantification of adenosine A2A receptors in the rat brain. J Cereb Blood Flow Metab 37:577–589

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Khanapur S, Huizing AP, Zijlma R, Schepers M, Dierckx RA, van Waarde A, de Vries EF, Elsinga PH (2014) Synthesis and preclinical evaluation of 2-(2-furanyl)-7-[2-[4-[4-(2-[11C]methoxyethoxy)phenyl]-1-piperazinyl]ethyl]7H-pyr azolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine-5-amine ([11C]Preladenant) as a PET tracer for the imaging of cerebral adenosine A2A receptors. J Med Chem 57:9204–9210

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Elmenhorst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elmenhorst, D., Bier, D., Holschbach, M., Bauer, A. (2021). Imaging of Adenosine Receptors. In: Dierckx, R.A., Otte, A., de Vries, E.F., van Waarde, A., Lammertsma, A.A. (eds) PET and SPECT of Neurobiological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-53176-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53176-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53175-1

  • Online ISBN: 978-3-030-53176-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics