Abstract
This chapter presents an overview of Arctic terrestrial snow cover and hydrology starting with the factors contributing to variability and change in large-scale snow cover extent and snow water equivalent (SWE), then moves to the local scale for a discussion of the processes and interactions responsible for the spatial distribution and physical properties of Arctic snow cover, most notably the roles of blowing snow and vegetation interactions. Snowmelt and runoff processes are subsequently covered with particular attention on liquid water infiltration through the snowpack and soil layers. The chapter concludes with an overview of Arctic snow observing systems, estimates of current and projected trends in Arctic snow cover extent and SWE, and potential hydrologic implications of the projected changes in snow cover. A key message from the Chapter is that the response of Arctic snow cover and snow hydrology to a changing climate is complex due to the numerous linkages and feedbacks within the coupled snow–soil–vegetation system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed R (2015) MSc thesis, UVic. Spatio-temporal variation in the spring freshet of major circumpolar Arctic river systems
Albert M, Koh G, Perron F (1999) Radar investigations of melt pathways in a natural snowpack. Hydrol Process 13(18):2991–3000
Assini J, Young KL (2012) Snow cover and snowmelt of an extensive High Arctic wetland: spatial and temporal seasonal patterns. Hydrol Sci J 57(4):738–755
Barrere M, Domine F, Decharme B, Morin S, Vionnet V, Lafaysse M (2017) Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site. Geoscientific Model Dev 10(9):3461–3479
Bartels-Rausch T, Jacobi H-W, Kahan TF, Thomas JL, Thomson ES, Abbatt JPD, Ammann M et al (2014) A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmos Chem Phys 14(3):1587–1633
Bartlett PA, MacKay MD, Verseghy DL (2006) Modified snow algorithms in the Canadian Land Surface Scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmos Ocean 44(3):207–222
Bartlett PA, Verseghy DL (2015) Modified treatment of intercepted snow improves the simulated forest albedo in the Canadian Land Surface Scheme. Hydrol Process 29(14):3208–3226
Bintanja R, Andry O (2017) Towards a rain-dominated Arctic. Nat Clim Change 7(4):263
Bøggild CE (2000). Preferential flow and melt water retention in cold snow packs in west-greenland. In: Paper presented at the 12th Northern Res. Basins/Workshop (Reykjavik, Iceland–Aug 23rd–27th 1999). Hydrol Res 31(4–5):287–300
Boike J, Roth K, Ippisch O (2003) Seasonal snow cover on frozen ground: energy balance calculations of a permafrost site near Ny‐Ålesund, Spitsbergen. J Geophys Res: Atmos 108(D2)
Bokhorst S, Pedersen SH, Brucker L, Anisimov O, Bjerke JW, Brown RD, Ehrich D, Essery RL, Heilig A, Ingvander S, Johansson C (2016) Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45(5):516–537
Boon S, Burgess DO, Koerner RM, Sharp MJ (2010) Forty-seven years of research on the Devon Island ice cap, Arctic Canada. Arctic 63:13–29. https://doi.org/10.2307/40513366
Box J et al (2019) Key Indicators of Arctic Climate Change: 1971-2017. Environ Res Lett. https://doi.org/10.1088/1748-9326/aafc1b
Brown RD, Brasnett B, Robinson D (2003) Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos Ocean 41(1):1–14
Brown R, Derksen C, Wang L (2010) A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J Geophys Res 115:D16111. https://doi.org/10.1029/2010JD013975
Brown RD, Derksen C (2013) Is Eurasian October snow cover extent increasing? Environ Res Lett 8:024006. https://doi.org/10.1088/1748-9326/8/2/024006
Brown R, Vikhamar-Schuler D, Bulygina O, Derksen C, Luojus K, Mudryk L, Wang L, Yang D (2017) Arctic terrestrial snow cover. Chapter 3 in: Snow, water, ice and permafrost in the arctic (SWIPA) 2017, pp. 25–64, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway
Brown R, Fang B, Mudryk L (2019) Update of Canadian historical snow survey data and analysis of snow water equivalent trends, 1967–2016. Atmosphere-Ocean 57(2):149–156
Brun E (1989) Investigation on wet-snow metamorphism in respect of liquid-water content. Ann Glaciol 13:22–26
Bulygina ON, Groisman PY, Razuvaev VN, Korshunova NN (2011) Changes in snow cover characteristics over Northern Eurasia since 1966. Environ Res Lett 6(4). https://doi.org/10.1088/1748-9326/6/4/045204
Carey SK, Quinton WL, Goeller NT (2007) Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils. Hydrol Process: Int J 21(19):2560–2571
Carmack EC, Yamamoto-Kawai M, Haine TW, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans ML, Williams WJ (2016) Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res: Biogeosci 121(3):675–717
Chen W, Russell DE, Gunn A, Croft B, Chen WR, Fernandes R, Zhao H et al (2013) Monitoring habitat condition changes during winter and pre-calving migration for Bathurst Caribou in northern Canada. Biodiversity 14(1):36–44
Choquette Y, Lavigne P, Nadeau M, Ducharme P, Martin JP, Houdayer A, Rogoza J (2008) GMON, a new sensor for snow water equivalent via gamma monitoring. In: Proceedings Whistler 2008 International Snow Science Workshop September 21–27, 2008 (p 802)
Clark M, Gurnell AM, Milton EJ, Seppälä M, Kyöstilä M (2013) Remotely-sensed vegetation classification as a snow depth indicator for hydrological analysis in sub-arctic Finland. Fennia-Int J Geograph 163(2):195–216
Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7(1):014007
Cohen, J., H. Ye, and J. Jones, 2015. Trends and variability in rain-on-snow events. Geophys. Res. Lett., 42, doi:10.1002/2015GL065320
Colbeck SC (1991) The layered character of snow covers. Rev Geophys 29(1):81–96
Costa D, Pomeroy J, Wheater H (2018) A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt: The PULSE model. Adv Water Resour 122:37–48
DeBeer CM, Wheater HS, Carey SK, Chun KP (2016) Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis. Hydrol Earth Syst Sci 20(4):1573–1598. https://doi.org/10.5194/hess-20-1573-2016
Deems JS, Painter TH, Finnegan DC (2013) Lidar measurement of snow depth: a review. J Glaciol 59:467–479
Derksen C, Walker A, Goodison B (2005) Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada. Remote Sens Environ 96(3–4):315–327
Derksen C, Silis A, Sturm M, Holmgren J, Liston GE, Huntington H, Solie D (2009) Northwest Territories and Nunavut snow characteristics from a subarctic traverse: Implications for passive microwave remote sensing. J Hydrometeorol 10(2):448–463
Derksen C, Toose P, Rees A, Wang L, English M, Walker A, Sturm M (2010) Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens Environ 114(8):1699–1709
Déry SJ, Taylor PA, Xiao J (1998) The thermodynamic effects of sublimating, blowing snow in the atmospheric boundary layer. Bound-Layer Meteorol 89(2):251–283
Déry SJ, Yau MK (2002) Large-scale mass balance effects of blowing snow and surface sublimation. J Geophys Res - Atmos 107(D23):4679. https://doi.org/10.1029/2001JD001251
Déry SJ, Crow WT, Stieglitz M, Wood EF (2004) Modeling snow-cover heterogeneity over complex Arctic terrain for regional and global climate models. J Hydrometeorol 5:33–48
DeWalle DR, Rango A (2011) Principles of snow hydrology. Cambridge University Press
Domine F, Bock J, Voisin D, Donaldson DJ (2013) Can we model snow photochemistry? Problems with the current approaches. J Phys Chem A 117(23):4733–4749
Domine F, Barrere M, Sarrazin D, Morin S, Arnaud L (2015) 2015: Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra. The Cryosphere 9:1265–1276. https://doi.org/10.5194/tc-9-1265-2015
Domine F, Belke-Brea M, Sarrazin D, Arnaud L, Barrere M, Poirier M (2018) Soil moisture, wind speed and depth hoar formation in the Arctic snowpack. J Glaciol 64(248):990–1002
Duguay CL, Green JE, Derksen C, English MI, Rees A, Sturm MA, Walker A (2005) Preliminary assessment of the impact of lakes on passive microwave snow retrieval algorithms in the Arctic. In: 62nd Eastern snow conference proceedings, 2005 Jun 7
Ebrahimi S, Marshall SJ (2015) Parameterization of incoming longwave radiation at glacier sites in the Canadian Rocky Mountains. J. Geophys. Res. Atmos. 120:12536–12556. https://doi.org/10.1002/2015JD023324
Ellis CR, Pomeroy JW, Brown T, MacDonald J (2010) Simulation of snow accumulation and melt in needleleaf forest environments. Hydrol Earth Syst Sci 14(6):925–940
Endrizzi S, Marsh P (2010) Observations and modeling of turbulent fluxes during melt at the shrub-tundra transition zone 1: point scale variations. Hydrol Res 41(6):471–491
Essery R, Rutter N, Pomeroy J, Baxter R, Stähli M, Gustafsson D, Barr A, Bartlett P, Elder K (2009) SNOWMIP2: An evaluation of forest snow process simulations. Bull Am Meteor Soc 90(8):1120–1136
Essery R, Morin S, Lejeune Y, Ménard CB (2013) A comparison of 1701 snow models using observations from an alpine site. Adv Water Resour 55:131–148
Eiriksson D, Whitson M, Luce CH, Marshall HP, Bradford J, Benner SG, McNamara JP (2013) An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales. Hydrol Process 27(5):640–654. https://doi.org/10.1002/hyp.9666
Fierz C, Armstrong RL, Durand Y, Etchevers P, Greene E, McClung DM, Nishimura K, Satyawali PK, Sokratov SA (2009) The international classification for seasonal snow on the ground. IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris
Forman BA, Reichle RH, Rodell M (2012) Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Water Resour Res 48:W01507. https://doi.org/10.1029/2011WR011239
Frappart F, Ramillien G, Famiglietti JS (2011) Water balance of the Arctic drainage system using GRACE gravimetry products. Int J Remote Sens 32:431–453
Freudiger D, Kohn I, Seibert J, Stahl K, Weiler M (2017) Snow redistribution for the hydrological modeling of alpine catchments, WIRES Water, e1232, https://doi.org/10.1002/wat2.1232
Grannas AM, Bogdal C, Hageman KJ, Halsall C, Harner T, Hung H, Kallenborn R, Klán P, Klánová J, Macdonald RW, Meyer T (2013) The role of the global cryosphere in the fate of organic contaminants. Atmos Chem Phys 13(6):3271–3305
Harder P, Pomeroy J (2013) Estimating precipitation phase using a psychrometric energy balance method. Hydrol Process 27(13):1901–1914
Harder P, Pomeroy JW, Helgason W (2017) Local-scale advection of sensible and latent heat during snowmelt. Geophys Res Lett 44(19):9769–9777
Harder P, Pomeroy JW, Helgason WD (2019) A simple model for local scale sensible and latent heat advection contributions to snowmelt. Hydrol Earth Syst Sci 23:1–17. https://doi.org/10.5194/hess-23-1-2019
Hetrick HF, Marshall HP, Bradford JH, McNamara JP, Eiriksson D (2016) Quantifying the role of lateral flow of water in a sloped mountainous snowpack: spatiotemporal patterns in soil moisture and snowmelt. AGUFM, 2016, pp C51D-0686
Homan JW, Kane DL (2015) Arctic snow distribution patterns at the watershed scale. Hydrol Res 46(4):507–520
Hori M, Sugiura K, Kobayashi K, Aoki T, Tanikawa T, Kuchiki K, Niwano M, Enomoto H (2017) A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens Environ 191:402–418
IPCC (2013) Annex I: Atlas of Global and Regional Climate Projections [van Oldenborgh GJ, Collins M, Arblaster J, Christensen JH, Marotzke J, Power SB, Rummukainen M and Zhou T (eds)]. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Jennings KS, Winchell TS, Livneh B, Molotch NP (2018) Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nature Commun 9(1):1148
Johansson C, Pohjola VA, Jonasson C, Callaghan TV (2011) Multi-decadal changes in snow characteristics in sub-Arctic Sweden. Ambio 40(6):566–74
Jones HG, Pomeroy JW, Walker DA, Hoham RW eds (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press
Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res 117:D05127. https://doi.org/10.1029/2011JD017139
Jordan R, Albert M, Brun E (2008) Physical processes within the snow cover and their parameterization. Chapter 2 in: Armstrong R, Brun E (eds) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, pp 12–69
Juszak I, Pellicciotti F (2013) A comparison of parameterizations of incoming longwave radiation over melting glaciers: model robustness and seasonal variability. J Geophys Res: Atmos 118(8):3066–3084
Karl Thomas R, Arguez Anthony, Huang Boyin, Lawrimore Jay H, McMahon James R, Menne Matthew J, Peterson Thomas C, Vose Russell S, Zhang Huai-Min (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Sci Expr. https://doi.org/10.1126/science.aaa5632
Kattelmann RC (1985) Macropores in snowpacks of Sierra Nevada. Ann Glaciol 6:272–273. https://doi.org/10.3189/1985AoG6-1-272-273
Kattelmann R, Dozier J (1999) Observations of snowpack ripening in the Sierra Nevada, California, USA. J Glaciol 45(151):409–416
Kinar NJ, Pomeroy JW (2015) Measurement of the physical properties of the snowpack. Rev Geophys 53(2):481–544
King J, Pomeroy J, Gray DM, Fierz C, Föhn P, Harding R, Jordan R, Martin E, Plüss C (2008) Snow-atmosphere energy and mass balance. Chapter 3 in: Armstrong R, Brun E (eds) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, pp 70–124
Kononova NK (2012) The influence of atmospheric circulation on the formation of snow cover on the north eastern Siberia. Ice Snow 1(117):38–53 (in Russian with English summary)
Krogh SA, Pomeroy JW, Marsh P (2017) Diagnosis of the hydrology of a small arctic basin at the tundra-taiga transition using a physically based hydrological model. J Hydrol 550:685–703
Krogh SA, Pomeroy JW (2019) Impact of future climate and vegetation on the hydrology of an arctic headwater basin at the tundra-taiga transition. J Hydrometeorol 20(2):197–215
Langen PL, Brown R, Grenier P, Barrette C, Chaumont D, Derksen C, Hamilton J, Ingeman-Nielsen T, Howell S, James T, Lavoie D, Marchenko S, Olsen SM, Rodehacke CB, Sharp M, Smith SL, Stendel M, Tonboe RT (2018) In adaptation actions for a changing arctic: perspectives from the baffin bay/davis strait region. Arctic Monitoring and Assessment Programme (AMAP), pp 39–76
Langlois A, Johnson CA, Montpetit B, Royer A, Blukacz-Richards EA, Neave E, Dolant C, Roy A, Arhonditsis G, Kim DK, Kaluskar S (2017) Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry: a context for Peary caribou habitat in the Canadian Arctic. Remote Sens Environ 189:84–95
Leroux NR (2018) Mass and heat flow through snowpacks. PhD Thesis, University of Saskatchewan, Saskatoon, Canada. 162 pp
Leroux NR, Pomeroy JW (2019) Simulation of capillary pressure overshoot in snow combining trapping of the wetting phase with a nonequilibrium Richards Equation model. Water Resour Res 55(1):236–248. https://doi.org/10.1029/2018WR022969
Lesack LF, Marsh P, Hicks FE, Forbes DL (2013) Timing, duration, and magnitude of peak annual water-levels during ice breakup in the Mackenzie Delta and the role of river discharge. Water Resour Res 49(12):8234–8249
Lesack LFW, Marsh P, Hicks FE, Forbes DL (2014) Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophys Res Lett 41(5):1560–1567
Liang S, Wang K, Zhang X, Wild M (2010) Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J Sel Top Appl Earth Obs Remote Sens 3(3):225–240
Liston GE (2004) Representing subgrid snow cover heterogeneities in regional and global models. J Clim 17:1381–1397
Liston GE, Elder K (2006) A distributed snow-evolution modeling system (SnowModel). J Hydrometeorol 7(6):1259–1276
Liston GE, Hiemstra CA (2011) The changing cryosphere: Pan-Arctic snow trends (1979–2009). J Clim 24(21):5691–5712
Mann P (2018) Spatial and temporal variability of the snow environment in the Western Canadian Arctic. MSc Thesis, Wilfrid Laurier University, Waterloo, Canada. 83 pp
Marsh P (1987) Grain growth in a wet arctic snow cover. Cold Reg Sci Technol 14(1):23–31
Marsh P, Woo MK (1981) Snowmelt, glacier melt, and high arctic streamflow regimes. Can J Earth Sci 18(8):1380–1384. https://doi.org/10.1139/e81-127
Marsh P, Woo MK (1984a) Wetting front advance and freezing of meltwater within a snow cover. Observations in the Canadian Arctic. Water Resour Res 16:1853–1864
Marsh P, Woo MK (1984b) Wetting front advance and freezing of meltwater within a snow cover. 2 A simulation model. Water Resour Res 16:1865–1874
Marsh P, Woo MK (1985) Meltwater movement in natural heterogeneous snow covers. Water Resour Res 21(11):1710–1716
Marsh P, Woo M (1987) Soil heat flux, wetting front advance and ice layer growth in cold, dry snow covers. Proceedings, snow property measurements workshop, pp 497–524
Marsh P, Woo MK (1993) Infiltration of meltwater into frozen soils in a continuous permafrost environment. In Proceedings of the sixth international conference on permafrost, vol 1. Beijing: South China University of Technology Press, pp 443–448
Marsh P, Pomeroy JW (1996) Meltwater fluxes at an arctic forest-tundra site. Hydrol Process 10(10):1383–1400
Marsh P, Pomeroy JW (1999) Spatial and temporal variations in snowmelt runoff chemistry, Northwest Territories Canada. Water Resour Res 35(5):1559–1567
Marsh, P., 2005. Water flow through snow and firn. In Encyclopedia of Hydrological Sciences (Vol. 4, Part 14, pp. 97–123). Chichester, England: John Wiley & Sons, Ltd
Marsh P, Bartlett P, MacKay M, Pohl S, Lantz T (2010) Snowmelt energetics at a shrub tundra site in the western Canadian Arctic. Hydrol Process 24(25):3603–3620
McClung D, Schaerer PA (2006) The avalanche handbook. The Mountaineers Books, Seattle, Washington
Michele CD, Avanzi F, Passoni D, Barzaghi R, Pinto L, Dosso P, Ghezzi A, Gianatti R, Vedova GD (2016) Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation. The Cryosphere 10(2):511–522
Mohammed AA, Kurylyk BL, Cey EE, Hayashi M (2018) Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework. Vadose Zone J 17(1):1–15
Mortimer C, Mudryk L, Derksen C, Luojus K, Brown R, Kelly R, Tedesco M (2020) Evaluation of long-term Northern Hemisphere snow water equivalent products. The Cryosphere 14:1579–1594. https://doi.org/10.5194/tc-14-1579-2020
Mudryk LR, Derksen C, Kushner PJ, Brown R (2015) Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J Clim 28(20):8037–8051
Mudryk LR, Derksen C, Howell S, Laliberté F, Thackeray C, Sospedra-Alfonso R, Vionnet V, Kushner PJ, Brown R (2018) Canadian snow and sea ice: historical trends and projections. The Cryosphere 12(4):1157–1176
Mudryk L, Brown R, Derksen C, Luojus K, Decharme B, Helfrich S (2019) Terrestrial snow cover. NOAA Arctic Report Card 2019. https://arctic.noaa.gov/Report-Card/Report-Card-2019
Musselman KN, Clark MP, Liu C, Ikeda K, Rasmussen R (2017) Slower snowmelt in a warmer world. Nat Clim Change 7(3):214
Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts, and research priorities. Environ Res Lett 6:045509
Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinge M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Lévesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jørgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M (2015) Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5:887–891
Neumann N, Marsh P (1998) Local advection of sensible heat in the snowmelt landscape of Arctic tundra. Hydrol Process 1560:1547–1560
Park H, Sherstiukov AB, Fedorov AN, Polyakov IV, Walsh JE (2014) An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia. Environ Res Lett 9(6):064026
Park H, Fedorov AN, Zheleznyak MN, Konstantinov PY, Walsh JE (2015) Effect of snow cover on pan-Arctic permafrost thermal regimes. Clim Dyn 44(9–10):2873–2895
Pedersen SH, Liston GE, Tamstorf MP, Westergaard-Nielsen A, Schmidt NM (2015) Quantifying episodic snowmelt events in arctic ecosystems. Ecosystems 18(5):839–856
Phoenix GK, Bjerke JW (2016) Arctic browning: extreme events and trends reversing arctic greening. Glob Change Biol 22(9):2960–2962
Pielmeier C, Schneebeli M (2003) Developments in the stratigraphy of snow. Surv Geophys 24(5–6):389–416
Pohl S, Marsh P (2006) Modelling the spatial–temporal variability of spring snowmelt in an arctic catchment. Hydrol Process 20(8):1773–1792
Pohl S, Marsh P, Liston GE (2006) Spatial-temporal variability in turbulent fluxes during spring snowmelt. Arct Antarct Alp Res 38(1):136–146
Pomeroy JW, Gray DM (1990) Saltation of snow. Water Resour Res 26(7):1583–1594
Pomeroy JW, Gray DM (1992) Steady-state suspension of snow. J Hydrol 136(1–4):275–301
Pomeroy JW, Marsh P, Gray DM (1997) Application of a distributed blowing snow model to the Arctic. Hydrol Process 11(11):1451–1464
Pomeroy JW, Gray DM, Shook KR, Toth B, Essery RLH, Pietroniro A, Hedstrom N (1998) An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol Process 12(15):2339–2367
Pomeroy JW, Brun E (2001) Physical properties of snow. In: Jones HG, Pomeroy WJ, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, UK, pp 45–118
Pomeroy JW, Jones HG, Tranter M, Lilbæk G (2006) Hydrochemical processes in snow‐covered basins. Encyclopedia of hydrological sciences
Pomeroy JW, Harding RJ (2008) Boreal forest. Section 3.5.5. In: Armstrong R, Brun E (eds) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, pp 109–115
Quinton WL, Marsh P (1999) A conceptual framework for runoff generation in a permafrost environment. Hydrol Process 13(16):2563–2581
Quinton WL, Carey SK, Goeller NT (2004) Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation. Hydrol Earth Syst Sci 8(5):877–890
Raddatz RL, Asplin MG, Papakyriakou T, Candlish LM, Galley RJ, Else B, Barber DG (2013) All-Sky Downwelling Longwave Radiation and Atmospheric-Column Water Vapour and Temperature over the Western Maritime Arctic. Atmos Ocean 51(2):145–152
Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30(2–3):307–319
Rapaic M, Brown R, Markovic M, Chaumont D (2015) An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010. Atmos Ocean 53(3):283–303. https://doi.org/10.1080/07055900.2015.1045825
Rawlins MA, Steele M, Holland MM, Adam JC, Cherry JE, Francis JA, Ya Groisman P et al (2010) Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J Clim 23(21):5715–5737. https://doi.org/10.1175/2010JCLI3421.1
Rees A, English M, Derksen C, Toose P, Silis A (2014) Observations of late winter Canadian tundra snow cover properties. Hydrol Process 28(12):3962–3977
Riggs GA, Hall DK, Román MO (2017) Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth Sys Sci Data 9(2):765–777
Rowlands DD, Luthcke SB, Klosko SM, Lemoine FG, Chinn DS, McCarthy JJ, Cox CM, Anderson OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32(4)
Sannel ABK, Hugelius G, Jansson P, Kuhry P (2015) Permafrost Warming in a Subarctic Peatland – Which Meteorological Controls are Most Important? Permafrost Periglac Process. https://doi.org/10.1002/ppp.1862
Schneebeli M (1995) Development and stability of preferential flow paths in a layered snowpack. IAHS Publ-Ser Proc Rep-Int Assoc Hydrol Sci 228:89–96
Seligman, G., 1936. Snow structure and ski fields: being an account of snow and ice forms met with in nature, and a study on avalanches and snowcraft. Macmillan and Company, limited
Serreze MC, Walsh JE, Chapin EC, Osterkamp T, Dyugerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high latitude environment. Clim Change 46:159–207
Shi HX, Wang CH (2015) Projected 21st century changes in snow water equivalent over Northern Hemisphere landmasses from the CMIP5 model ensemble. The Cryosphere 9(5):1943–1953
Shook K, Gray DM, Pomeroy JW (1993) Temporal variation in snowcover area during melt in prairie and alpine environments. Hydrol Res 24(2–3):183–198
Shook K, Gray DM (1997) Synthesizing shallow seasonal snow covers. Water Resour Res 33(3):419–426
Sicart JE, Pomeroy JW, Essery RLH, Bewley D (2006) Incoming longwave radiation to melting snow: observations, sensitivity and estimation in northern environments. Hydrol Process 20(17):3697–3708
Slater AG, Lawrence DM, Koven CD (2017) Process-level model evaluation: a snow and heat transfer metric. The Cryosphere 11:989–996. https://doi.org/10.5194/tc-11-989-2017
Smith CD, Kontu A, Laffin R, Pomeroy JW (2017) An assessment of two automated snow water equivalent instruments during the WMO Solid Precipitation Intercomparison Experiment. The Cryosphere 11(1):101–116
Smith C, Fierz C (2019) Measurement of snow. In: Preliminary 2018 edition of the CIMO Guide (WMO-No.8). https://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/Prelim_2018_ed/Preliminary-2018-edition.html (Chapter link provided in table under MEASUREMENT OF CRYOSPHERIC VARIABLES)
Spence CH, Kokelj SV, Ehsanzadeh EG (2011) Precipitation trends contribute to streamflow regime shifts in northern Canada. In: Yang D, Marsh P, Gelfan A (eds) Cold regions hydrology in a changing climate. IAHS Publication, Int Assoc Hydrological Sciences, Wallingford, pp 3–8
Spence C, Kokelj SV, Kokelj SA, McCluskie M, Hedstrom N (2015) 2015: Evidence of a change in water chemistry in Canada’s subarctic associated with enhanced winter streamflow. J Geophys Res-Biogeosci 120:113–127
Strasser U, Bernhardt M, Weber M, Liston GE, Mauser W (2008) Is snow sublimation important in the alpine water balance? The Cryosphere 2:53–66
Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8(5):1261–1283
Sturm M, Liston GE, Benson CS, Holmgren J (2001) Characteristics and growth of a snowdrift in Arctic Alaska, USA. Arct, Antarct Alp Res 33(3):319–329
Sturm M, Taras B, Liston GE, Derksen C, Jonas T, Lea J (2010) Estimating snow water equivalent using snow depth data and climate classes. J Hydrometeorol 11(6):1380–1394
Sturm M, Stuefer S (2013) Wind-blown flux rates derived from drifts at arctic snow fences. J Glaciol 59(213):21–34
Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan‐Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34:L19404. https://doi.org/10.1029/2007GL031254
Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä JP, Koskinen J, Bojkov B (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115(12):3517–3529
Tan A, Adam JC, Lettenmaier DP (2011) Change in spring snowmelt timing in Eurasian Arctic rivers. J Geophys Res: Atmos 116:D03101. https://doi.org/10.1029/2010JD014337
Thackeray CW, Qu X, Hall A (2018) Why do models produce spread in snow albedo feedback? Geophys Res Lett 45:6223–6231. https://doi.org/10.1029/2018GL078493
US Army Corps of Engineers (1956). Snow hydrology: summary report of the snow investigations. Portland Oregon, 437 p
Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, Deser C, Holland M, Prowse T (2016) The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J Geophys Res Biogeosci 121:586–620. https://doi.org/10.1002/2015JG003132
Vincent LA, Zhang X, Brown RD, Feng Y, Mekis E, Milewska EJ, Wan H, Wang XL (2015) Observed trends in Canada’s climate and influence of low-frequency variability modes. J Clim 28:4545–4560. https://doi.org/10.1175/JCLI-D-14-00697.1
Vionnet V, Brun E, Morin S, Boone A, Faroux S, Le Moigne P et al (2012) The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci Model Dev 5:773–791. https://doi.org/10.5194/gmd-5-773-2012
Waldner PA, Schneebeli M, Schultze-Zimmermann U, Flühler H (2004) Effect of snow structure on water flow and solute transport. Hydrol Process 18(7):1271–1290
Wang L, Toose P, Brown R, Derksen C (2016) Frequency and distribution of winter melt events from passive microwave satellite data in the pan-Arctic, 1988–2013. The Cryosphere 10(6):2589
Wever N, Würzer S, Fierz C, Lehning M (2016) Simulating ice layer formation under the presence of preferential flow in layered snowpacks. The Cryosphere 10(6):2731–2744
Woo MK, Sauriol J (1981) Effects of snow jams on fluvial activities in the High Arctic. Phys Geogr 2(1):83–98
Woo MK, Heron R, Marsh P (1982) Basal ice in high arctic snowpacks. Arct Alp Res 14(3):251–260
Woo M-K, Young KL (2014) Disappearing semi-permanent snow in the High Arctic and its consequences. J Glaciol 60:192–200
Woo MK, Marsh P (2017) Snow distribution and snowpack characteristics. Chapter 40, Singh VP (ed) Handbook of applied hydrology, Second Edition Hardcover. McGraw Hill
Yang D, Robinson D, Zhao Y, Estilow T, Ye B (2003) Streamflow response to seasonal snow cover extent changes in large Siberian watersheds. J Geophys Res 108(D18):4578. https://doi.org/10.1029/2002JD003149
Yang D, Zhao Y, Armstrong R, Robinson D, Brodzik M-J (2007) Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J Geophys Res 112:F02S22 https://doi.org/10.1029/2006jf000518
Ye H, Cohen J (2013) A shorter snowfall season associated with higher air temperatures over northern Eurasia. Environ Res Lett 8(2013)014052:7 pp https://doi.org/10.1088/1748-9326/8/1/014052
Ye H, Yang D, Robinson D (2008) Winter rain on snow and its association with air temperature over northern Eurasia. Hydrol Process 22:2728–2736. https://doi.org/10.1002/hyp.7094
Zhao L, Gray DM (1999) Estimating snowmelt infiltration into frozen soils. Hydrol Process 13(12–13):1827–1842
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Brown, R., Marsh, P., Déry, S., Yang, D. (2021). Snow Cover—Observations, Processes, Changes, and Impacts on Northern Hydrology. In: Yang, D., Kane, D.L. (eds) Arctic Hydrology, Permafrost and Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-50930-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-50930-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50928-6
Online ISBN: 978-3-030-50930-9
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)