Nothing Special   »   [go: up one dir, main page]

Skip to main content

Snow Cover—Observations, Processes, Changes, and Impacts on Northern Hydrology

  • Chapter
  • First Online:
Arctic Hydrology, Permafrost and Ecosystems
  • 2146 Accesses

Abstract

This chapter presents an overview of Arctic terrestrial snow cover and hydrology starting with the factors contributing to variability and change in large-scale snow cover extent and snow water equivalent (SWE), then moves to the local scale for a discussion of the processes and interactions responsible for the spatial distribution and physical properties of Arctic snow cover, most notably the roles of blowing snow and vegetation interactions. Snowmelt and runoff processes are subsequently covered with particular attention on liquid water infiltration through the snowpack and soil layers. The chapter concludes with an overview of Arctic snow observing systems, estimates of current and projected trends in Arctic snow cover extent and SWE, and potential hydrologic implications of the projected changes in snow cover. A key message from the Chapter is that the response of Arctic snow cover and snow hydrology to a changing climate is complex due to the numerous linkages and feedbacks within the coupled snow–soil–vegetation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Arctic annual maximum season snow water storage estimated from the GlobSnow version 2 product (Takala et al. 2011) and the Liston and Hiemstra (2011) 10-km Arctic snow cover reconstruction.

References

  • Ahmed R (2015) MSc thesis, UVic. Spatio-temporal variation in the spring freshet of major circumpolar Arctic river systems

    Google Scholar 

  • Albert M, Koh G, Perron F (1999) Radar investigations of melt pathways in a natural snowpack. Hydrol Process 13(18):2991–3000

    Google Scholar 

  • Assini J, Young KL (2012) Snow cover and snowmelt of an extensive High Arctic wetland: spatial and temporal seasonal patterns. Hydrol Sci J 57(4):738–755

    Google Scholar 

  • Barrere M, Domine F, Decharme B, Morin S, Vionnet V, Lafaysse M (2017) Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site. Geoscientific Model Dev 10(9):3461–3479

    Google Scholar 

  • Bartels-Rausch T, Jacobi H-W, Kahan TF, Thomas JL, Thomson ES, Abbatt JPD, Ammann M et al (2014) A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmos Chem Phys 14(3):1587–1633

    Google Scholar 

  • Bartlett PA, MacKay MD, Verseghy DL (2006) Modified snow algorithms in the Canadian Land Surface Scheme: Model runs and sensitivity analysis at three boreal forest stands. Atmos Ocean 44(3):207–222

    Google Scholar 

  • Bartlett PA, Verseghy DL (2015) Modified treatment of intercepted snow improves the simulated forest albedo in the Canadian Land Surface Scheme. Hydrol Process 29(14):3208–3226

    Google Scholar 

  • Bintanja R, Andry O (2017) Towards a rain-dominated Arctic. Nat Clim Change 7(4):263

    Google Scholar 

  • Bøggild CE (2000). Preferential flow and melt water retention in cold snow packs in west-greenland. In: Paper presented at the 12th Northern Res. Basins/Workshop (Reykjavik, Iceland–Aug 23rd–27th 1999). Hydrol Res 31(4–5):287–300

    Google Scholar 

  • Boike J, Roth K, Ippisch O (2003) Seasonal snow cover on frozen ground: energy balance calculations of a permafrost site near Ny‐Ålesund, Spitsbergen. J Geophys Res: Atmos 108(D2)

    Google Scholar 

  • Bokhorst S, Pedersen SH, Brucker L, Anisimov O, Bjerke JW, Brown RD, Ehrich D, Essery RL, Heilig A, Ingvander S, Johansson C (2016) Changing Arctic snow cover: A review of recent developments and assessment of future needs for observations, modelling, and impacts. Ambio 45(5):516–537

    Google Scholar 

  • Boon S, Burgess DO, Koerner RM, Sharp MJ (2010) Forty-seven years of research on the Devon Island ice cap, Arctic Canada. Arctic 63:13–29. https://doi.org/10.2307/40513366

    Article  Google Scholar 

  • Box J et al (2019) Key Indicators of Arctic Climate Change: 1971-2017. Environ Res Lett. https://doi.org/10.1088/1748-9326/aafc1b

    Book  Google Scholar 

  • Brown RD, Brasnett B, Robinson D (2003) Gridded North American monthly snow depth and snow water equivalent for GCM evaluation. Atmos Ocean 41(1):1–14

    Google Scholar 

  • Brown R, Derksen C, Wang L (2010) A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008. J Geophys Res 115:D16111. https://doi.org/10.1029/2010JD013975

    Article  Google Scholar 

  • Brown RD, Derksen C (2013) Is Eurasian October snow cover extent increasing? Environ Res Lett 8:024006. https://doi.org/10.1088/1748-9326/8/2/024006

    Article  Google Scholar 

  • Brown R, Vikhamar-Schuler D, Bulygina O, Derksen C, Luojus K, Mudryk L, Wang L, Yang D (2017) Arctic terrestrial snow cover. Chapter 3 in: Snow, water, ice and permafrost in the arctic (SWIPA) 2017, pp. 25–64, Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway

    Google Scholar 

  • Brown R, Fang B, Mudryk L (2019) Update of Canadian historical snow survey data and analysis of snow water equivalent trends, 1967–2016. Atmosphere-Ocean 57(2):149–156

    Google Scholar 

  • Brun E (1989) Investigation on wet-snow metamorphism in respect of liquid-water content. Ann Glaciol 13:22–26

    Google Scholar 

  • Bulygina ON, Groisman PY, Razuvaev VN, Korshunova NN (2011) Changes in snow cover characteristics over Northern Eurasia since 1966. Environ Res Lett 6(4). https://doi.org/10.1088/1748-9326/6/4/045204

  • Carey SK, Quinton WL, Goeller NT (2007) Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils. Hydrol Process: Int J 21(19):2560–2571

    Google Scholar 

  • Carmack EC, Yamamoto-Kawai M, Haine TW, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans ML, Williams WJ (2016) Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res: Biogeosci 121(3):675–717

    Google Scholar 

  • Chen W, Russell DE, Gunn A, Croft B, Chen WR, Fernandes R, Zhao H et al (2013) Monitoring habitat condition changes during winter and pre-calving migration for Bathurst Caribou in northern Canada. Biodiversity 14(1):36–44

    Google Scholar 

  • Choquette Y, Lavigne P, Nadeau M, Ducharme P, Martin JP, Houdayer A, Rogoza J (2008) GMON, a new sensor for snow water equivalent via gamma monitoring. In: Proceedings Whistler 2008 International Snow Science Workshop September 21–27, 2008 (p 802)

    Google Scholar 

  • Clark M, Gurnell AM, Milton EJ, Seppälä M, Kyöstilä M (2013) Remotely-sensed vegetation classification as a snow depth indicator for hydrological analysis in sub-arctic Finland. Fennia-Int J Geograph 163(2):195–216

    Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA, Alexeev VA, Cherry JE (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7(1):014007

    Google Scholar 

  • Cohen, J., H. Ye, and J. Jones, 2015. Trends and variability in rain-on-snow events. Geophys. Res. Lett., 42, doi:10.1002/2015GL065320

    Google Scholar 

  • Colbeck SC (1991) The layered character of snow covers. Rev Geophys 29(1):81–96

    Google Scholar 

  • Costa D, Pomeroy J, Wheater H (2018) A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt: The PULSE model. Adv Water Resour 122:37–48

    Google Scholar 

  • DeBeer CM, Wheater HS, Carey SK, Chun KP (2016) Recent climatic, cryospheric, and hydrological changes over the interior of western Canada: a review and synthesis. Hydrol Earth Syst Sci 20(4):1573–1598. https://doi.org/10.5194/hess-20-1573-2016

    Google Scholar 

  • Deems JS, Painter TH, Finnegan DC (2013) Lidar measurement of snow depth: a review. J Glaciol 59:467–479

    Google Scholar 

  • Derksen C, Walker A, Goodison B (2005) Evaluation of passive microwave snow water equivalent retrievals across the boreal forest/tundra transition of western Canada. Remote Sens Environ 96(3–4):315–327

    Google Scholar 

  • Derksen C, Silis A, Sturm M, Holmgren J, Liston GE, Huntington H, Solie D (2009) Northwest Territories and Nunavut snow characteristics from a subarctic traverse: Implications for passive microwave remote sensing. J Hydrometeorol 10(2):448–463

    Google Scholar 

  • Derksen C, Toose P, Rees A, Wang L, English M, Walker A, Sturm M (2010) Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data. Remote Sens Environ 114(8):1699–1709

    Google Scholar 

  • Déry SJ, Taylor PA, Xiao J (1998) The thermodynamic effects of sublimating, blowing snow in the atmospheric boundary layer. Bound-Layer Meteorol 89(2):251–283

    Google Scholar 

  • Déry SJ, Yau MK (2002) Large-scale mass balance effects of blowing snow and surface sublimation. J Geophys Res - Atmos 107(D23):4679. https://doi.org/10.1029/2001JD001251

    Article  Google Scholar 

  • Déry SJ, Crow WT, Stieglitz M, Wood EF (2004) Modeling snow-cover heterogeneity over complex Arctic terrain for regional and global climate models. J Hydrometeorol 5:33–48

    Google Scholar 

  • DeWalle DR, Rango A (2011) Principles of snow hydrology. Cambridge University Press

    Google Scholar 

  • Domine F, Bock J, Voisin D, Donaldson DJ (2013) Can we model snow photochemistry? Problems with the current approaches. J Phys Chem A 117(23):4733–4749

    Google Scholar 

  • Domine F, Barrere M, Sarrazin D, Morin S, Arnaud L (2015) 2015: Automatic monitoring of the effective thermal conductivity of snow in a low Arctic shrub tundra. The Cryosphere 9:1265–1276. https://doi.org/10.5194/tc-9-1265-2015

    Article  Google Scholar 

  • Domine F, Belke-Brea M, Sarrazin D, Arnaud L, Barrere M, Poirier M (2018) Soil moisture, wind speed and depth hoar formation in the Arctic snowpack. J Glaciol 64(248):990–1002

    Google Scholar 

  • Duguay CL, Green JE, Derksen C, English MI, Rees A, Sturm MA, Walker A (2005) Preliminary assessment of the impact of lakes on passive microwave snow retrieval algorithms in the Arctic. In: 62nd Eastern snow conference proceedings, 2005 Jun 7

    Google Scholar 

  • Ebrahimi S, Marshall SJ (2015) Parameterization of incoming longwave radiation at glacier sites in the Canadian Rocky Mountains. J. Geophys. Res. Atmos. 120:12536–12556. https://doi.org/10.1002/2015JD023324

    Article  Google Scholar 

  • Ellis CR, Pomeroy JW, Brown T, MacDonald J (2010) Simulation of snow accumulation and melt in needleleaf forest environments. Hydrol Earth Syst Sci 14(6):925–940

    Google Scholar 

  • Endrizzi S, Marsh P (2010) Observations and modeling of turbulent fluxes during melt at the shrub-tundra transition zone 1: point scale variations. Hydrol Res 41(6):471–491

    Google Scholar 

  • Essery R, Rutter N, Pomeroy J, Baxter R, Stähli M, Gustafsson D, Barr A, Bartlett P, Elder K (2009) SNOWMIP2: An evaluation of forest snow process simulations. Bull Am Meteor Soc 90(8):1120–1136

    Google Scholar 

  • Essery R, Morin S, Lejeune Y, Ménard CB (2013) A comparison of 1701 snow models using observations from an alpine site. Adv Water Resour 55:131–148

    Google Scholar 

  • Eiriksson D, Whitson M, Luce CH, Marshall HP, Bradford J, Benner SG, McNamara JP (2013) An evaluation of the hydrologic relevance of lateral flow in snow at hillslope and catchment scales. Hydrol Process 27(5):640–654. https://doi.org/10.1002/hyp.9666

    Article  Google Scholar 

  • Fierz C, Armstrong RL, Durand Y, Etchevers P, Greene E, McClung DM, Nishimura K, Satyawali PK, Sokratov SA (2009) The international classification for seasonal snow on the ground. IHP-VII Technical Documents in Hydrology N°83, IACS Contribution N°1, UNESCO-IHP, Paris

    Google Scholar 

  • Forman BA, Reichle RH, Rodell M (2012) Assimilation of terrestrial water storage from GRACE in a snow-dominated basin. Water Resour Res 48:W01507. https://doi.org/10.1029/2011WR011239

    Article  Google Scholar 

  • Frappart F, Ramillien G, Famiglietti JS (2011) Water balance of the Arctic drainage system using GRACE gravimetry products. Int J Remote Sens 32:431–453

    Google Scholar 

  • Freudiger D, Kohn I, Seibert J, Stahl K, Weiler M (2017) Snow redistribution for the hydrological modeling of alpine catchments, WIRES Water, e1232, https://doi.org/10.1002/wat2.1232

  • Grannas AM, Bogdal C, Hageman KJ, Halsall C, Harner T, Hung H, Kallenborn R, Klán P, Klánová J, Macdonald RW, Meyer T (2013) The role of the global cryosphere in the fate of organic contaminants. Atmos Chem Phys 13(6):3271–3305

    Google Scholar 

  • Harder P, Pomeroy J (2013) Estimating precipitation phase using a psychrometric energy balance method. Hydrol Process 27(13):1901–1914

    Google Scholar 

  • Harder P, Pomeroy JW, Helgason W (2017) Local-scale advection of sensible and latent heat during snowmelt. Geophys Res Lett 44(19):9769–9777

    Google Scholar 

  • Harder P, Pomeroy JW, Helgason WD (2019) A simple model for local scale sensible and latent heat advection contributions to snowmelt. Hydrol Earth Syst Sci 23:1–17. https://doi.org/10.5194/hess-23-1-2019

    Book  Google Scholar 

  • Hetrick HF, Marshall HP, Bradford JH, McNamara JP, Eiriksson D (2016) Quantifying the role of lateral flow of water in a sloped mountainous snowpack: spatiotemporal patterns in soil moisture and snowmelt. AGUFM, 2016, pp C51D-0686

    Google Scholar 

  • Homan JW, Kane DL (2015) Arctic snow distribution patterns at the watershed scale. Hydrol Res 46(4):507–520

    Google Scholar 

  • Hori M, Sugiura K, Kobayashi K, Aoki T, Tanikawa T, Kuchiki K, Niwano M, Enomoto H (2017) A 38-year (1978–2015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors. Remote Sens Environ 191:402–418

    Google Scholar 

  • IPCC (2013) Annex I: Atlas of Global and Regional Climate Projections [van Oldenborgh GJ, Collins M, Arblaster J, Christensen JH, Marotzke J, Power SB, Rummukainen M and Zhou T (eds)]. In: Climate Change 2013: The Physical Sci­ence Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Jennings KS, Winchell TS, Livneh B, Molotch NP (2018) Spatial variation of the rain–snow temperature threshold across the Northern Hemisphere. Nature Commun 9(1):1148

    Google Scholar 

  • Johansson C, Pohjola VA, Jonasson C, Callaghan TV (2011) Multi-decadal changes in snow characteristics in sub-Arctic Sweden. Ambio 40(6):566–74

    Google Scholar 

  • Jones HG, Pomeroy JW, Walker DA, Hoham RW eds (2001) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press

    Google Scholar 

  • Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res 117:D05127. https://doi.org/10.1029/2011JD017139

    Article  Google Scholar 

  • Jordan R, Albert M, Brun E (2008) Physical processes within the snow cover and their parameterization. Chapter 2 in: Armstrong R, Brun E (eds) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, pp 12–69

    Google Scholar 

  • Juszak I, Pellicciotti F (2013) A comparison of parameterizations of incoming longwave radiation over melting glaciers: model robustness and seasonal variability. J Geophys Res: Atmos 118(8):3066–3084

    Google Scholar 

  • Karl Thomas R, Arguez Anthony, Huang Boyin, Lawrimore Jay H, McMahon James R, Menne Matthew J, Peterson Thomas C, Vose Russell S, Zhang Huai-Min (2015) Possible artifacts of data biases in the recent global surface warming hiatus. Sci Expr. https://doi.org/10.1126/science.aaa5632

    Article  Google Scholar 

  • Kattelmann RC (1985) Macropores in snowpacks of Sierra Nevada. Ann Glaciol 6:272–273. https://doi.org/10.3189/1985AoG6-1-272-273

  • Kattelmann R, Dozier J (1999) Observations of snowpack ripening in the Sierra Nevada, California, USA. J Glaciol 45(151):409–416

    Google Scholar 

  • Kinar NJ, Pomeroy JW (2015) Measurement of the physical properties of the snowpack. Rev Geophys 53(2):481–544

    Google Scholar 

  • King J, Pomeroy J, Gray DM, Fierz C, Föhn P, Harding R, Jordan R, Martin E, Plüss C (2008) Snow-atmosphere energy and mass balance. Chapter 3 in: Armstrong R, Brun E (eds) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, pp 70–124

    Google Scholar 

  • Kononova NK (2012) The influence of atmospheric circulation on the formation of snow cover on the north eastern Siberia. Ice Snow 1(117):38–53 (in Russian with English summary)

    Google Scholar 

  • Krogh SA, Pomeroy JW, Marsh P (2017) Diagnosis of the hydrology of a small arctic basin at the tundra-taiga transition using a physically based hydrological model. J Hydrol 550:685–703

    Google Scholar 

  • Krogh SA, Pomeroy JW (2019) Impact of future climate and vegetation on the hydrology of an arctic headwater basin at the tundra-taiga transition. J Hydrometeorol 20(2):197–215

    Google Scholar 

  • Langen PL, Brown R, Grenier P, Barrette C, Chaumont D, Derksen C, Hamilton J, Ingeman-Nielsen T, Howell S, James T, Lavoie D, Marchenko S, Olsen SM, Rodehacke CB, Sharp M, Smith SL, Stendel M, Tonboe RT (2018) In adaptation actions for a changing arctic: perspectives from the baffin bay/davis strait region. Arctic Monitoring and Assessment Programme (AMAP), pp 39–76

    Google Scholar 

  • Langlois A, Johnson CA, Montpetit B, Royer A, Blukacz-Richards EA, Neave E, Dolant C, Roy A, Arhonditsis G, Kim DK, Kaluskar S (2017) Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry: a context for Peary caribou habitat in the Canadian Arctic. Remote Sens Environ 189:84–95

    Google Scholar 

  • Leroux NR (2018) Mass and heat flow through snowpacks. PhD Thesis, University of Saskatchewan, Saskatoon, Canada. 162 pp

    Google Scholar 

  • Leroux NR, Pomeroy JW (2019) Simulation of capillary pressure overshoot in snow combining trapping of the wetting phase with a nonequilibrium Richards Equation model. Water Resour Res 55(1):236–248. https://doi.org/10.1029/2018WR022969

    Article  Google Scholar 

  • Lesack LF, Marsh P, Hicks FE, Forbes DL (2013) Timing, duration, and magnitude of peak annual water-levels during ice breakup in the Mackenzie Delta and the role of river discharge. Water Resour Res 49(12):8234–8249

    Google Scholar 

  • Lesack LFW, Marsh P, Hicks FE, Forbes DL (2014) Local spring warming drives earlier river-ice breakup in a large Arctic delta. Geophys Res Lett 41(5):1560–1567

    Google Scholar 

  • Liang S, Wang K, Zhang X, Wild M (2010) Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J Sel Top Appl Earth Obs Remote Sens 3(3):225–240

    Google Scholar 

  • Liston GE (2004) Representing subgrid snow cover heterogeneities in regional and global models. J Clim 17:1381–1397

    Google Scholar 

  • Liston GE, Elder K (2006) A distributed snow-evolution modeling system (SnowModel). J Hydrometeorol 7(6):1259–1276

    Google Scholar 

  • Liston GE, Hiemstra CA (2011) The changing cryosphere: Pan-Arctic snow trends (1979–2009). J Clim 24(21):5691–5712

    Google Scholar 

  • Mann P (2018) Spatial and temporal variability of the snow environment in the Western Canadian Arctic. MSc Thesis, Wilfrid Laurier University, Waterloo, Canada. 83 pp

    Google Scholar 

  • Marsh P (1987) Grain growth in a wet arctic snow cover. Cold Reg Sci Technol 14(1):23–31

    Google Scholar 

  • Marsh P, Woo MK (1981) Snowmelt, glacier melt, and high arctic streamflow regimes. Can J Earth Sci 18(8):1380–1384. https://doi.org/10.1139/e81-127

  • Marsh P, Woo MK (1984a) Wetting front advance and freezing of meltwater within a snow cover. Observations in the Canadian Arctic. Water Resour Res 16:1853–1864

    Google Scholar 

  • Marsh P, Woo MK (1984b) Wetting front advance and freezing of meltwater within a snow cover. 2 A simulation model. Water Resour Res 16:1865–1874

    Google Scholar 

  • Marsh P, Woo MK (1985) Meltwater movement in natural heterogeneous snow covers. Water Resour Res 21(11):1710–1716

    Google Scholar 

  • Marsh P, Woo M (1987) Soil heat flux, wetting front advance and ice layer growth in cold, dry snow covers. Proceedings, snow property measurements workshop, pp 497–524

    Google Scholar 

  • Marsh P, Woo MK (1993) Infiltration of meltwater into frozen soils in a continuous permafrost environment. In Proceedings of the sixth international conference on permafrost, vol 1. Beijing: South China University of Technology Press, pp 443–448

    Google Scholar 

  • Marsh P, Pomeroy JW (1996) Meltwater fluxes at an arctic forest-tundra site. Hydrol Process 10(10):1383–1400

    Google Scholar 

  • Marsh P, Pomeroy JW (1999) Spatial and temporal variations in snowmelt runoff chemistry, Northwest Territories Canada. Water Resour Res 35(5):1559–1567

    Google Scholar 

  • Marsh, P., 2005. Water flow through snow and firn. In Encyclopedia of Hydrological Sciences (Vol. 4, Part 14, pp. 97–123). Chichester, England: John Wiley & Sons, Ltd

    Google Scholar 

  • Marsh P, Bartlett P, MacKay M, Pohl S, Lantz T (2010) Snowmelt energetics at a shrub tundra site in the western Canadian Arctic. Hydrol Process 24(25):3603–3620

    Google Scholar 

  • McClung D, Schaerer PA (2006) The avalanche handbook. The Mountaineers Books, Seattle, Washington

    Google Scholar 

  • Michele CD, Avanzi F, Passoni D, Barzaghi R, Pinto L, Dosso P, Ghezzi A, Gianatti R, Vedova GD (2016) Using a fixed-wing UAS to map snow depth distribution: an evaluation at peak accumulation. The Cryosphere 10(2):511–522

    Google Scholar 

  • Mohammed AA, Kurylyk BL, Cey EE, Hayashi M (2018) Snowmelt infiltration and macropore flow in frozen soils: overview, knowledge gaps, and a conceptual framework. Vadose Zone J 17(1):1–15

    Google Scholar 

  • Mortimer C, Mudryk L, Derksen C, Luojus K, Brown R, Kelly R, Tedesco M (2020) Evaluation of long-term Northern Hemisphere snow water equivalent products. The Cryosphere 14:1579–1594. https://doi.org/10.5194/tc-14-1579-2020

  • Mudryk LR, Derksen C, Kushner PJ, Brown R (2015) Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J Clim 28(20):8037–8051

    Google Scholar 

  • Mudryk LR, Derksen C, Howell S, Laliberté F, Thackeray C, Sospedra-Alfonso R, Vionnet V, Kushner PJ, Brown R (2018) Canadian snow and sea ice: historical trends and projections. The Cryosphere 12(4):1157–1176

    Google Scholar 

  • Mudryk L, Brown R, Derksen C, Luojus K, Decharme B, Helfrich S (2019) Terrestrial snow cover. NOAA Arctic Report Card 2019. https://arctic.noaa.gov/Report-Card/Report-Card-2019

  • Musselman KN, Clark MP, Liu C, Ikeda K, Rasmussen R (2017) Slower snowmelt in a warmer world. Nat Clim Change 7(3):214

    Google Scholar 

  • Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts, and research priorities. Environ Res Lett 6:045509

    Google Scholar 

  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinge M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, Speed JDM, Boulanger-Lapointe N, Rixen C, Lévesque E, Schmidt NM, Baittinger C, Trant AJ, Hermanutz L, Collier LS, Dawes MA, Lantz TC, Weijers S, Jørgensen RH, Buchwal A, Buras A, Naito AT, Ravolainen V, Schaepman-Strub G, Wheeler JA, Wipf S, Guay KC, Hik DS, Vellend M (2015) Climate sensitivity of shrub growth across the tundra biome. Nat Clim Change 5:887–891

    Google Scholar 

  • Neumann N, Marsh P (1998) Local advection of sensible heat in the snowmelt landscape of Arctic tundra. Hydrol Process 1560:1547–1560

    Google Scholar 

  • Park H, Sherstiukov AB, Fedorov AN, Polyakov IV, Walsh JE (2014) An observation-based assessment of the influences of air temperature and snow depth on soil temperature in Russia. Environ Res Lett 9(6):064026

    Google Scholar 

  • Park H, Fedorov AN, Zheleznyak MN, Konstantinov PY, Walsh JE (2015) Effect of snow cover on pan-Arctic permafrost thermal regimes. Clim Dyn 44(9–10):2873–2895

    Google Scholar 

  • Pedersen SH, Liston GE, Tamstorf MP, Westergaard-Nielsen A, Schmidt NM (2015) Quantifying episodic snowmelt events in arctic ecosystems. Ecosystems 18(5):839–856

    Google Scholar 

  • Phoenix GK, Bjerke JW (2016) Arctic browning: extreme events and trends reversing arctic greening. Glob Change Biol 22(9):2960–2962

    Google Scholar 

  • Pielmeier C, Schneebeli M (2003) Developments in the stratigraphy of snow. Surv Geophys 24(5–6):389–416

    Google Scholar 

  • Pohl S, Marsh P (2006) Modelling the spatial–temporal variability of spring snowmelt in an arctic catchment. Hydrol Process 20(8):1773–1792

    Google Scholar 

  • Pohl S, Marsh P, Liston GE (2006) Spatial-temporal variability in turbulent fluxes during spring snowmelt. Arct Antarct Alp Res 38(1):136–146

    Google Scholar 

  • Pomeroy JW, Gray DM (1990) Saltation of snow. Water Resour Res 26(7):1583–1594

    Google Scholar 

  • Pomeroy JW, Gray DM (1992) Steady-state suspension of snow. J Hydrol 136(1–4):275–301

    Google Scholar 

  • Pomeroy JW, Marsh P, Gray DM (1997) Application of a distributed blowing snow model to the Arctic. Hydrol Process 11(11):1451–1464

    Google Scholar 

  • Pomeroy JW, Gray DM, Shook KR, Toth B, Essery RLH, Pietroniro A, Hedstrom N (1998) An evaluation of snow accumulation and ablation processes for land surface modelling. Hydrol Process 12(15):2339–2367

    Google Scholar 

  • Pomeroy JW, Brun E (2001) Physical properties of snow. In: Jones HG, Pomeroy WJ, Walker DA, Hoham RW (eds) Snow ecology: an interdisciplinary examination of snow-covered ecosystems. Cambridge University Press, Cambridge, UK, pp 45–118

    Google Scholar 

  • Pomeroy JW, Jones HG, Tranter M, Lilbæk G (2006) Hydrochemical processes in snow‐covered basins. Encyclopedia of hydrological sciences

    Google Scholar 

  • Pomeroy JW, Harding RJ (2008) Boreal forest. Section 3.5.5. In: Armstrong R, Brun E (eds) Snow and climate: physical processes, surface energy exchange and modeling. Cambridge University Press, pp 109–115

    Google Scholar 

  • Quinton WL, Marsh P (1999) A conceptual framework for runoff generation in a permafrost environment. Hydrol Process 13(16):2563–2581

    Google Scholar 

  • Quinton WL, Carey SK, Goeller NT (2004) Snowmelt runoff from northern alpine tundra hillslopes: major processes and methods of simulation. Hydrol Earth Syst Sci 8(5):877–890

    Google Scholar 

  • Raddatz RL, Asplin MG, Papakyriakou T, Candlish LM, Galley RJ, Else B, Barber DG (2013) All-Sky Downwelling Longwave Radiation and Atmospheric-Column Water Vapour and Temperature over the Western Maritime Arctic. Atmos Ocean 51(2):145–152

    Google Scholar 

  • Räisänen J (2008) Warmer climate: less or more snow? Clim Dyn 30(2–3):307–319

    Google Scholar 

  • Rapaic M, Brown R, Markovic M, Chaumont D (2015) An evaluation of temperature and precipitation surface-based and reanalysis datasets for the Canadian Arctic, 1950–2010. Atmos Ocean 53(3):283–303. https://doi.org/10.1080/07055900.2015.1045825

    Article  Google Scholar 

  • Rawlins MA, Steele M, Holland MM, Adam JC, Cherry JE, Francis JA, Ya Groisman P et al (2010) Analysis of the Arctic system for freshwater cycle intensification: observations and expectations. J Clim 23(21):5715–5737. https://doi.org/10.1175/2010JCLI3421.1

    Article  Google Scholar 

  • Rees A, English M, Derksen C, Toose P, Silis A (2014) Observations of late winter Canadian tundra snow cover properties. Hydrol Process 28(12):3962–3977

    Google Scholar 

  • Riggs GA, Hall DK, Román MO (2017) Overview of NASA’s MODIS and visible infrared imaging radiometer suite (VIIRS) snow-cover earth system data records. Earth Sys Sci Data 9(2):765–777

    Google Scholar 

  • Rowlands DD, Luthcke SB, Klosko SM, Lemoine FG, Chinn DS, McCarthy JJ, Cox CM, Anderson OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32(4)

    Google Scholar 

  • Sannel ABK, Hugelius G, Jansson P, Kuhry P (2015) Permafrost Warming in a Subarctic Peatland – Which Meteorological Controls are Most Important? Permafrost Periglac Process. https://doi.org/10.1002/ppp.1862

    Article  Google Scholar 

  • Schneebeli M (1995) Development and stability of preferential flow paths in a layered snowpack. IAHS Publ-Ser Proc Rep-Int Assoc Hydrol Sci 228:89–96

    Google Scholar 

  • Seligman, G., 1936. Snow structure and ski fields: being an account of snow and ice forms met with in nature, and a study on avalanches and snowcraft. Macmillan and Company, limited

    Google Scholar 

  • Serreze MC, Walsh JE, Chapin EC, Osterkamp T, Dyugerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high latitude environment. Clim Change 46:159–207

    Google Scholar 

  • Shi HX, Wang CH (2015) Projected 21st century changes in snow water equivalent over Northern Hemisphere landmasses from the CMIP5 model ensemble. The Cryosphere 9(5):1943–1953

    Google Scholar 

  • Shook K, Gray DM, Pomeroy JW (1993) Temporal variation in snowcover area during melt in prairie and alpine environments. Hydrol Res 24(2–3):183–198

    Google Scholar 

  • Shook K, Gray DM (1997) Synthesizing shallow seasonal snow covers. Water Resour Res 33(3):419–426

    Google Scholar 

  • Sicart JE, Pomeroy JW, Essery RLH, Bewley D (2006) Incoming longwave radiation to melting snow: observations, sensitivity and estimation in northern environments. Hydrol Process 20(17):3697–3708

    Google Scholar 

  • Slater AG, Lawrence DM, Koven CD (2017) Process-level model evaluation: a snow and heat transfer metric. The Cryosphere 11:989–996. https://doi.org/10.5194/tc-11-989-2017

    Article  Google Scholar 

  • Smith CD, Kontu A, Laffin R, Pomeroy JW (2017) An assessment of two automated snow water equivalent instruments during the WMO Solid Precipitation Intercomparison Experiment. The Cryosphere 11(1):101–116

    Google Scholar 

  • Smith C, Fierz C (2019) Measurement of snow. In: Preliminary 2018 edition of the CIMO Guide (WMO-No.8). https://www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/Prelim_2018_ed/Preliminary-2018-edition.html (Chapter link provided in table under MEASUREMENT OF CRYOSPHERIC VARIABLES)

  • Spence CH, Kokelj SV, Ehsanzadeh EG (2011) Precipitation trends contribute to streamflow regime shifts in northern Canada. In: Yang D, Marsh P, Gelfan A (eds) Cold regions hydrology in a changing climate. IAHS Publication, Int Assoc Hydrological Sciences, Wallingford, pp 3–8

    Google Scholar 

  • Spence C, Kokelj SV, Kokelj SA, McCluskie M, Hedstrom N (2015) 2015: Evidence of a change in water chemistry in Canada’s subarctic associated with enhanced winter streamflow. J Geophys Res-Biogeosci 120:113–127

    Google Scholar 

  • Strasser U, Bernhardt M, Weber M, Liston GE, Mauser W (2008) Is snow sublimation important in the alpine water balance? The Cryosphere 2:53–66

    Google Scholar 

  • Sturm M, Holmgren J, Liston GE (1995) A seasonal snow cover classification system for local to global applications. J Clim 8(5):1261–1283

    Google Scholar 

  • Sturm M, Liston GE, Benson CS, Holmgren J (2001) Characteristics and growth of a snowdrift in Arctic Alaska, USA. Arct, Antarct Alp Res 33(3):319–329

    Google Scholar 

  • Sturm M, Taras B, Liston GE, Derksen C, Jonas T, Lea J (2010) Estimating snow water equivalent using snow depth data and climate classes. J Hydrometeorol 11(6):1380–1394

    Google Scholar 

  • Sturm M, Stuefer S (2013) Wind-blown flux rates derived from drifts at arctic snow fences. J Glaciol 59(213):21–34

    Google Scholar 

  • Syed TH, Famiglietti JS, Zlotnicki V, Rodell M (2007) Contemporary estimates of Pan‐Arctic freshwater discharge from GRACE and reanalysis. Geophys Res Lett 34:L19404. https://doi.org/10.1029/2007GL031254

  • Takala M, Luojus K, Pulliainen J, Derksen C, Lemmetyinen J, Kärnä JP, Koskinen J, Bojkov B (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115(12):3517–3529

    Google Scholar 

  • Tan A, Adam JC, Lettenmaier DP (2011) Change in spring snowmelt timing in Eurasian Arctic rivers. J Geophys Res: Atmos 116:D03101. https://doi.org/10.1029/2010JD014337

  • Thackeray CW, Qu X, Hall A (2018) Why do models produce spread in snow albedo feedback? Geophys Res Lett 45:6223–6231. https://doi.org/10.1029/2018GL078493

  • US Army Corps of Engineers (1956). Snow hydrology: summary report of the snow investigations. Portland Oregon, 437 p

    Google Scholar 

  • Vihma T, Screen J, Tjernström M, Newton B, Zhang X, Popova V, Deser C, Holland M, Prowse T (2016) The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J Geophys Res Biogeosci 121:586–620. https://doi.org/10.1002/2015JG003132

    Article  Google Scholar 

  • Vincent LA, Zhang X, Brown RD, Feng Y, Mekis E, Milewska EJ, Wan H, Wang XL (2015) Observed trends in Canada’s climate and influence of low-frequency variability modes. J Clim 28:4545–4560. https://doi.org/10.1175/JCLI-D-14-00697.1

    Article  Google Scholar 

  • Vionnet V, Brun E, Morin S, Boone A, Faroux S, Le Moigne P et al (2012) The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci Model Dev 5:773–791. https://doi.org/10.5194/gmd-5-773-2012

    Article  Google Scholar 

  • Waldner PA, Schneebeli M, Schultze-Zimmermann U, Flühler H (2004) Effect of snow structure on water flow and solute transport. Hydrol Process 18(7):1271–1290

    Google Scholar 

  • Wang L, Toose P, Brown R, Derksen C (2016) Frequency and distribution of winter melt events from passive microwave satellite data in the pan-Arctic, 1988–2013. The Cryosphere 10(6):2589

    Google Scholar 

  • Wever N, Würzer S, Fierz C, Lehning M (2016) Simulating ice layer formation under the presence of preferential flow in layered snowpacks. The Cryosphere 10(6):2731–2744

    Google Scholar 

  • Woo MK, Sauriol J (1981) Effects of snow jams on fluvial activities in the High Arctic. Phys Geogr 2(1):83–98

    Google Scholar 

  • Woo MK, Heron R, Marsh P (1982) Basal ice in high arctic snowpacks. Arct Alp Res 14(3):251–260

    Google Scholar 

  • Woo M-K, Young KL (2014) Disappearing semi-permanent snow in the High Arctic and its consequences. J Glaciol 60:192–200

    Google Scholar 

  • Woo MK, Marsh P (2017) Snow distribution and snowpack characteristics. Chapter 40, Singh VP (ed) Handbook of applied hydrology, Second Edition Hardcover. McGraw Hill

    Google Scholar 

  • Yang D, Robinson D, Zhao Y, Estilow T, Ye B (2003) Streamflow response to seasonal snow cover extent changes in large Siberian watersheds. J Geophys Res 108(D18):4578. https://doi.org/10.1029/2002JD003149

    Article  Google Scholar 

  • Yang D, Zhao Y, Armstrong R, Robinson D, Brodzik M-J (2007) Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J Geophys Res 112:F02S22 https://doi.org/10.1029/2006jf000518

  • Ye H, Cohen J (2013) A shorter snowfall season associated with higher air temperatures over northern Eurasia. Environ Res Lett 8(2013)014052:7 pp https://doi.org/10.1088/1748-9326/8/1/014052

  • Ye H, Yang D, Robinson D (2008) Winter rain on snow and its association with air temperature over northern Eurasia. Hydrol Process 22:2728–2736. https://doi.org/10.1002/hyp.7094

    Article  Google Scholar 

  • Zhao L, Gray DM (1999) Estimating snowmelt infiltration into frozen soils. Hydrol Process 13(12–13):1827–1842

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brown, R., Marsh, P., Déry, S., Yang, D. (2021). Snow Cover—Observations, Processes, Changes, and Impacts on Northern Hydrology. In: Yang, D., Kane, D.L. (eds) Arctic Hydrology, Permafrost and Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-030-50930-9_3

Download citation

Publish with us

Policies and ethics