Nothing Special   »   [go: up one dir, main page]

Skip to main content

Parameter Selection in Dynamic Contrast-Enhanced Magnetic Resonance Tomography

  • Conference paper
  • First Online:
Mathematical and Numerical Approaches for Multi-Wave Inverse Problems (CIRM 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 328))

Included in the following conference series:

Abstract

In this work we consider the image reconstruction problem of sparsely sampled dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). DCE-MRI is a technique for acquiring a series of MR images before, during and after intravenous contrast agent administration, and it is used to study microvascular structure and perfusion. To overcome the ill-posedness of the related spatio-temporal inverse problem, we use regularization. In regularization one of the main problems is how to determine the regularization parameter which controls the balance between data fitting term and regularization term. Most methods for selecting this parameter require the computation of a large number of estimates even in stationary problems. In dynamic imaging, the parameter selection is even more time consuming since separate regularization parameters are needed for the spatial and temporal regularization functionals. In this work, we study the possibility of using the S-curve with DCE-MR data. We select the spatial regularization parameter using the S-curve, leaving the temporal regularization parameter as the only free parameter in the reconstruction problem. In this work, the temporal regularization parameter is selected manually by computing reconstructions with several values of the temporal regularization parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Segment length equals the number of radial spokes per image. The number of elements M in the data vector \(m_t\) is segment length times number of samples per spoke.

References

  1. Adluru, G., DiBella, E.V.R.: A comparison of L1 and L2 norms as temporal constraints for reconstruction of undersampled dynamic contrast enhanced cardiac scans with respiratory motion. In: Proceedings of International Society for Magnetic Resonance in Medicine, vol. 16, p. 340 (2008)

    Google Scholar 

  2. Adluru, G., McGann, C., Speier, P., Kholmovski, E.G., Shaaban, A., Dibella, E.V.R.: Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging. J. Magn. Reson. Imaging 29(2), 466–473 (2009)

    Google Scholar 

  3. Adluru, G., Whitaker, R.T., DiBella, E.V.R.: Spatio-temporal constrained reconstruction of sparse dynamic contrast enhanced radial MRI data. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 109–112 (2007)

    Google Scholar 

  4. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Candès, E., Romberg, K.J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chambolle, A., Levine, S.E., Lucier, B.J.: An upwind finite-difference method for total variation-based image smoothing. SIAM J. Imaging Sci. 4(1), 277–299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Edholm, P.R., Herman, G.T.: Linograms in image reconstruction from projections. IEEE Trans. Med. Imaging 6(4), 301–307 (1987)

    Article  Google Scholar 

  10. Fessler, J.A., Sutton, B.P.: Nonuniform fast fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 51, 560–574 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guillot, G., Giovannelli.: Iddn.fr.001.080011.000.s.p.2019.000.31230. International Identifier of Digital Works, 2, 2019. An optional note

    Google Scholar 

  12. Hämäläinen, K., Kallonen, A., Kolehmainen, V., Lassas, M., Niinimäki, K., Siltanen, S.: Sparse tomography. SIAM J. Sci. Comput. 35(3), B644–B665 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hanhela, M., Kettunen, M., Gröhn, O., Vauhkonen, M., Kolehmainen, V.: Temporal Huber regularization for DCE-MR. J. Math. Imaging Vis. manuscr. (2019)

    Google Scholar 

  14. Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)

    Article  Google Scholar 

  15. Kolehmainen, V., Lassas, M., Niinimäki, K., Siltanen, S.: Sparsity-promoting Bayesian inversion. Inverse Probl. 28(2), 025005 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kusmia, S., Eliav, U., Navon, G., Guillot, G.: DQF-MT MRI of connective tissues: application to tendon and muscle. Magn. Reson. Mater. Phys. Biol. Med. 26, 203–214 (2013)

    Article  Google Scholar 

  17. Lavini, C., Verhoeff, J.J.C.: Reproducibility of the gadolinium concentration measurements and of the fitting parameters of the vascular input function in the superior sagittal sinus in a patient population. Magn. Reson. Imaging 28(10), 1420–1430 (2010)

    Google Scholar 

  18. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 118–195 (2007)

    Article  Google Scholar 

  19. Martincich, L., Montemurro, F., De Rosa, G., Marra, V., Ponzone, R., Cirillo, S., Gatti, M., Biglia, N., Sarotto, I., Sismondi, P., Regge, D., Aglietta, M.: Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res. Treat. 83(1), 67–76 (2004)

    Article  Google Scholar 

  20. Merali, Z., Huang, K., Mikulis, D., Silver, F., Kassner, A.: Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS One 12(2), 1–11 (2017)

    Article  Google Scholar 

  21. Mistretta, C.A., Wieben, O., Velikina, J., Block, W., Perry, J., Wu, Y., Johnson, K., Wu, Y.: Highly constrained backprojection for time-resolved MRI. Magn. Reson. Med. 55(1), 30–40 (2006)

    Article  Google Scholar 

  22. Niinimäki, K.: Computational optimization methods for large-scale inverse problems. Ph.D. thesis, University of Eastern Finland (2013)

    Google Scholar 

  23. Niinimäki, K., Lassas, M., Hämäläinen, K., Kallonen, A., Kolehmainen, V., Niemi, E., Siltanen, S.: Multi-resolution parameter choice method for total variation regularised tomography (2015). Submitted. http://arxiv.org/abs/1407.2386

  24. Pickles, M., Lowry, M., Manton, D., Gibbs, P., Turnbull, L.: Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy. Breast Cancer Res. Treat. 91(1), 1–10 (2005)

    Article  Google Scholar 

  25. Piludu, F., Marzi, S., Pace, A., Villani, V., Fabi, A., Carapella, C., Terrenato, I., Antenucci, A., Vidiri, A.: Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas. Neuroradiology 57(12), 1269–1280 (2015)

    Article  Google Scholar 

  26. Port, R.E., Knopp, M.V., Brix, G.: Dynamic contrast-enhanced MRI using Gd-DTPA: interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magn. Reson. Med. 45(6), 1030–1038 (2001)

    Article  Google Scholar 

  27. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B.W., Lee, T.-Y., Mayr, N.A., Parker, G.J.M., Port, R.E., Taylor, J., Weisskoff, R.M.: Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. 10(3), 223–232 (1999)

    Google Scholar 

  29. Valdés-Hernández, P.A., Sumiyoshi, A., Nonaka, H., Haga, R., Aubert-Vásquez, E., Ogawa, T., Iturria-Medina, Y., Riera, J.J., Kawashima, R.: An in vivo MRI template set for morphometry, tissue segmentation, and fMRI localization in rats. Front. Neuroinformatics 5, 26 (2011)

    Google Scholar 

  30. Villringer, K., Sanz Cuesta, B.E., Ostwaldt, A.-C., Grittner, U., Brunecker, P., Khalil, A.A., Schindler, K., Eisenblätter, O., Audebert, H., Fiebach, J.B.: DCE-MRI blood–brain barrier assessment in acute ischemic stroke. Neurology 88(5), 433–440 (2017)

    Google Scholar 

  31. Wang, D., Arlinghaus, L.R., Yankeelov, T.E., Yang, X., Smith, D.S.: Quantitative evaluation of temporal regularizers in compressed sensing dynamic contrast enhanced MRI of the breast. Int. J. Biomed. Imaging 7835749 (2017)

    Google Scholar 

  32. Winkelmann, S., Schaeffter, T., Koehler, T., Eggers, H., Doessel, O.: An optimal radial profile order based on the golden ratio for time-resolved MRI. IEEE Trans. Med. Imaging 26(1), 68–76 (2007)

    Article  Google Scholar 

  33. Zong, X., Lee, J., Poplawsky, A.J., Kim, S.-G., Jong, C.Y.: Compressed sensing fMRI using gradient-recalled echo and epi sequences. NeuroImage 92, 312–321 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Jane and Aatos Erkko foundation and the Academy of Finland, Centre of Excellence in Inverse Modelling and imaging (project 312343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kati Niinimäki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Niinimäki, K., Hanhela, M., Kolehmainen, V. (2020). Parameter Selection in Dynamic Contrast-Enhanced Magnetic Resonance Tomography. In: Beilina, L., Bergounioux, M., Cristofol, M., Da Silva, A., Litman, A. (eds) Mathematical and Numerical Approaches for Multi-Wave Inverse Problems. CIRM 2019. Springer Proceedings in Mathematics & Statistics, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-030-48634-1_6

Download citation

Publish with us

Policies and ethics