Abstract
In this work we consider the image reconstruction problem of sparsely sampled dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI). DCE-MRI is a technique for acquiring a series of MR images before, during and after intravenous contrast agent administration, and it is used to study microvascular structure and perfusion. To overcome the ill-posedness of the related spatio-temporal inverse problem, we use regularization. In regularization one of the main problems is how to determine the regularization parameter which controls the balance between data fitting term and regularization term. Most methods for selecting this parameter require the computation of a large number of estimates even in stationary problems. In dynamic imaging, the parameter selection is even more time consuming since separate regularization parameters are needed for the spatial and temporal regularization functionals. In this work, we study the possibility of using the S-curve with DCE-MR data. We select the spatial regularization parameter using the S-curve, leaving the temporal regularization parameter as the only free parameter in the reconstruction problem. In this work, the temporal regularization parameter is selected manually by computing reconstructions with several values of the temporal regularization parameter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Segment length equals the number of radial spokes per image. The number of elements M in the data vector \(m_t\) is segment length times number of samples per spoke.
References
Adluru, G., DiBella, E.V.R.: A comparison of L1 and L2 norms as temporal constraints for reconstruction of undersampled dynamic contrast enhanced cardiac scans with respiratory motion. In: Proceedings of International Society for Magnetic Resonance in Medicine, vol. 16, p. 340 (2008)
Adluru, G., McGann, C., Speier, P., Kholmovski, E.G., Shaaban, A., Dibella, E.V.R.: Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging. J. Magn. Reson. Imaging 29(2), 466–473 (2009)
Adluru, G., Whitaker, R.T., DiBella, E.V.R.: Spatio-temporal constrained reconstruction of sparse dynamic contrast enhanced radial MRI data. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 109–112 (2007)
Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)
Candès, E., Romberg, K.J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)
Candès, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
Chambolle, A., Levine, S.E., Lucier, B.J.: An upwind finite-difference method for total variation-based image smoothing. SIAM J. Imaging Sci. 4(1), 277–299 (2011)
Edholm, P.R., Herman, G.T.: Linograms in image reconstruction from projections. IEEE Trans. Med. Imaging 6(4), 301–307 (1987)
Fessler, J.A., Sutton, B.P.: Nonuniform fast fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 51, 560–574 (2003)
Guillot, G., Giovannelli.: Iddn.fr.001.080011.000.s.p.2019.000.31230. International Identifier of Digital Works, 2, 2019. An optional note
Hämäläinen, K., Kallonen, A., Kolehmainen, V., Lassas, M., Niinimäki, K., Siltanen, S.: Sparse tomography. SIAM J. Sci. Comput. 35(3), B644–B665 (2013)
Hanhela, M., Kettunen, M., Gröhn, O., Vauhkonen, M., Kolehmainen, V.: Temporal Huber regularization for DCE-MR. J. Math. Imaging Vis. manuscr. (2019)
Knoll, F., Bredies, K., Pock, T., Stollberger, R.: Second order total generalized variation (TGV) for MRI. Magn. Reson. Med. 65(2), 480–491 (2011)
Kolehmainen, V., Lassas, M., Niinimäki, K., Siltanen, S.: Sparsity-promoting Bayesian inversion. Inverse Probl. 28(2), 025005 (2012)
Kusmia, S., Eliav, U., Navon, G., Guillot, G.: DQF-MT MRI of connective tissues: application to tendon and muscle. Magn. Reson. Mater. Phys. Biol. Med. 26, 203–214 (2013)
Lavini, C., Verhoeff, J.J.C.: Reproducibility of the gadolinium concentration measurements and of the fitting parameters of the vascular input function in the superior sagittal sinus in a patient population. Magn. Reson. Imaging 28(10), 1420–1430 (2010)
Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 118–195 (2007)
Martincich, L., Montemurro, F., De Rosa, G., Marra, V., Ponzone, R., Cirillo, S., Gatti, M., Biglia, N., Sarotto, I., Sismondi, P., Regge, D., Aglietta, M.: Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res. Treat. 83(1), 67–76 (2004)
Merali, Z., Huang, K., Mikulis, D., Silver, F., Kassner, A.: Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS One 12(2), 1–11 (2017)
Mistretta, C.A., Wieben, O., Velikina, J., Block, W., Perry, J., Wu, Y., Johnson, K., Wu, Y.: Highly constrained backprojection for time-resolved MRI. Magn. Reson. Med. 55(1), 30–40 (2006)
Niinimäki, K.: Computational optimization methods for large-scale inverse problems. Ph.D. thesis, University of Eastern Finland (2013)
Niinimäki, K., Lassas, M., Hämäläinen, K., Kallonen, A., Kolehmainen, V., Niemi, E., Siltanen, S.: Multi-resolution parameter choice method for total variation regularised tomography (2015). Submitted. http://arxiv.org/abs/1407.2386
Pickles, M., Lowry, M., Manton, D., Gibbs, P., Turnbull, L.: Role of dynamic contrast enhanced MRI in monitoring early response of locally advanced breast cancer to neoadjuvant chemotherapy. Breast Cancer Res. Treat. 91(1), 1–10 (2005)
Piludu, F., Marzi, S., Pace, A., Villani, V., Fabi, A., Carapella, C., Terrenato, I., Antenucci, A., Vidiri, A.: Early biomarkers from dynamic contrast-enhanced magnetic resonance imaging to predict the response to antiangiogenic therapy in high-grade gliomas. Neuroradiology 57(12), 1269–1280 (2015)
Port, R.E., Knopp, M.V., Brix, G.: Dynamic contrast-enhanced MRI using Gd-DTPA: interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magn. Reson. Med. 45(6), 1030–1038 (2001)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)
Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B.W., Lee, T.-Y., Mayr, N.A., Parker, G.J.M., Port, R.E., Taylor, J., Weisskoff, R.M.: Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. 10(3), 223–232 (1999)
Valdés-Hernández, P.A., Sumiyoshi, A., Nonaka, H., Haga, R., Aubert-Vásquez, E., Ogawa, T., Iturria-Medina, Y., Riera, J.J., Kawashima, R.: An in vivo MRI template set for morphometry, tissue segmentation, and fMRI localization in rats. Front. Neuroinformatics 5, 26 (2011)
Villringer, K., Sanz Cuesta, B.E., Ostwaldt, A.-C., Grittner, U., Brunecker, P., Khalil, A.A., Schindler, K., Eisenblätter, O., Audebert, H., Fiebach, J.B.: DCE-MRI blood–brain barrier assessment in acute ischemic stroke. Neurology 88(5), 433–440 (2017)
Wang, D., Arlinghaus, L.R., Yankeelov, T.E., Yang, X., Smith, D.S.: Quantitative evaluation of temporal regularizers in compressed sensing dynamic contrast enhanced MRI of the breast. Int. J. Biomed. Imaging 7835749 (2017)
Winkelmann, S., Schaeffter, T., Koehler, T., Eggers, H., Doessel, O.: An optimal radial profile order based on the golden ratio for time-resolved MRI. IEEE Trans. Med. Imaging 26(1), 68–76 (2007)
Zong, X., Lee, J., Poplawsky, A.J., Kim, S.-G., Jong, C.Y.: Compressed sensing fMRI using gradient-recalled echo and epi sequences. NeuroImage 92, 312–321 (2014)
Acknowledgements
This work was supported by Jane and Aatos Erkko foundation and the Academy of Finland, Centre of Excellence in Inverse Modelling and imaging (project 312343).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Niinimäki, K., Hanhela, M., Kolehmainen, V. (2020). Parameter Selection in Dynamic Contrast-Enhanced Magnetic Resonance Tomography. In: Beilina, L., Bergounioux, M., Cristofol, M., Da Silva, A., Litman, A. (eds) Mathematical and Numerical Approaches for Multi-Wave Inverse Problems. CIRM 2019. Springer Proceedings in Mathematics & Statistics, vol 328. Springer, Cham. https://doi.org/10.1007/978-3-030-48634-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-48634-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-48633-4
Online ISBN: 978-3-030-48634-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)