Abstract
Basic problems of on-line diagnostics of large-scale industrial processes have been characterized, as well as the methods aimed at solving them, focusing on the authors results obtained in the area of fault isolation. Particular attention was given to fault distinguishability, multiple faults isolation, inference methods of uncertain signals, decomposition of the system and diagnostics in decentralized structures, as well as the application of graph models in diagnostic systems design for industrial processes. Effective and robust diagnostic algorithms of complex dynamic large-scale systems and their implementation in the realized diagnostics systems are also described. The summary emphasizes the significance of on-line diagnostics in ensuring process safety.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bartyś, M.: Chosen Issues of Fault Isolation, Theory, Practice and Applications. PWN, Warszawa (2014)
Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes—Theory and Application. Prentice-Hall, Englewood Cliffs, NJ (1993)
Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer, Berlin (2004)
Chen, J., Patton, R.: Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Akademic Publishers, Boston (1999)
Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, Inc., New York-Basel-Hong Kong (1998)
Himmelblau, D.: Fault Detection and Diagnosis in Chemical and Petrochemical Processes. Elsevier, Amsterdam (1978)
Isermann, R.: Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance. Springer, New York (2006)
Korbicz, J., Kościelny, J.M. (eds.): Modeling, Diagnostics and Process Control. Implementation in the DiaSter System. Springer, Berlin, Heidelberg (2010)
Korbicz, J., Kościelny, J.M., Kowalczuk, Z., Cholewa, W. (eds.): Fault Diagnosis: Models, Artificial Intelligence Methods, Applications. Springer, Berlin, Heidelberg (2004)
Kościelny, J.M.: Diagnostics of Automated Industrial Processes, (in Polish. Akademicka Oficyna Wydawnicza Exit, Warsaw (2001)
Patton, R., Frank, P., Clark, R. (eds.): Issues of Fault Diagnosis for Dynamic Systems. Springer, London (2000)
Witczak, M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems. From Analytical to Soft Computing Approaches. Springer, Berlin (2007)
Calado, J.M.F., Korbicz, J., Patan, K., Patton, R.J., Sá da Costa, J.M.G.: Soft computing approaches to fault diagnosis for dynamic systems. Eur. J. Control 7(2–3), 248–286 (2001)
Frank, P.M.: Fault diagnosis in dynamic systems via state estimations methods. A survey. In: Tzafestas S.G., et al. (eds.) System Fault Diagnostics, Reliability and Related Knowledge Based Approaches, vol. 2, D. Reidl Publishing Company, Dordrecht (1987)
Frank, P.M.: Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy. Automatica 26, 459–474 (1990)
Isermann, R.: Model-based fault-detection and diagnosis—status and applications. Annu. Rev. Control 29(2005), 71–85 (2005)
Isermann, R., Ballé, P.: Trends in the application of model-based fault detection and diagnosis of technical process. Control Eng. Pract. 5(5), 709–719 (1997)
Korbicz, J.: Robust fault detection using analytical and soft computing methods. Bull. Polish Acad. Sci. Tech. Sci. 54(1), 75–88 (2006)
Leonhardt, S., Ayoubi, M.: Methods of fault diagnosis. Control Eng. Pract. 5(5), 683–692 (1997)
Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis, Part I: quantitative model-based methods. Comput. Chem. Eng. 27, 293–311 (2003)
Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.: A review of process fault detection and diagnosis, Part II: qualitative model and search strategies. Comput. Chem. Eng. 27, 313–326 (2003)
Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K.: A review of process fault detection and diagnosis, Part III: process history based methods. Comput. Chem. Eng. 27, 327–346 (2003)
Kościelny, J.M., Syfert, M.: Application properties of methods for fault detection and isolation in the diagnosis of complex large-scale processes. Bull. Polish Acad. Sci. Tech. Sci. 62(3), 571–582 (2014)
Kościelny, J.M.: Diagnostics of Continuous Automatized Industrial Processes by Dynamic Table of States Method (in Polish). In: Scientific Papers of Warsaw Technical University, Series: Electronics, vol. 95. Warszawa (1991)
Kościelny, J.M., Syfert, M.: Robust diagnostics of complex chemical processes: main problems and possible solutions. Chem. Process Eng. 39(2), 1–19 (2018)
Łabęda-Grudziak, Z.: Zastosowanie addytywnego modelu regresji do generacji residuów dla potrzeb detekcji uszkodzeń. Ph.D. Dissertation, PW, Wydział Mechatroniki (2011)
Kościelny, J.M.: Recognition of fault in the diagnosing process. Appl. Math. Comput. Sci. 3(3), 559–572 (1993)
Pawlak, Z.: Systemy Informacyjne. Podstawy teoretyczne, WNT, Warszawa (1983)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning About Data. Springer, Netherlands (1991)
Kościelny, J.M., Bartyś, M., Rzepiejewski, P., Sá da Costa, J.: Actuator fault distinguishability study. Control Eng. Pract. 14, 645–652 (2006)
Kościelny, J., Syfert, M., Wnuk, P.: Advanced monitoring and diagnostic system ‘AMandD’. IFAC Proc. Volumes 39(13), 635–640 (2006)
Kościelny, J.M., Zakroczymski, K.: Fault isolation algorithm that takes dynamics of symptoms appearances into account. Bull. Polish Acad. Sci. Tech. Sci. 49(2), 323–336 (2001)
Syfert, M., Kościelny, J.M.: Diagnostic reasoning based on symptom forming sequence. IFAC Proc. Volumes 42(8), 89–94 (2009)
Sztyber, A., Ostasz, A., Kościelny, J.M.: Graph of a process—a new tool for finding model’s structures in model based diagnosis. IEEE Trans. Syst., Man, Cybern.: Syst. 45(7), 1004–1017 (2015)
Kościelny, J.M., Syfert, M., Sztyber, A.: Fault distinguishability in diagnostic of complex dynamical systems (in Polish). Akademicka Oficyna Wydawnicza EXIT (2018)
Kościelny, J.M., Rostek, K., Syfert, M., Sztyber, A.: Fault isolability with different forms of faults-symptoms relation. Int. J. Appl. Math. Comput. Sci. 26(4), 815–826 (2016)
Kościelny, J.M., Syfert, M., Tabor, Ł.: Application of knowledge about residuals dynamics for fault isolation and identification. In: Conference on Control and Fault-Tolerant Systems. SysTol′13, Nice, IEEE Xplore Digital Library, pp. 275–280 (2013)
Kościelny, J.M., Łabęda-Grudziak, Z.: Double fault distinguishability in linear systems. Int. J. Appl. Math. Comput. Sci. 23(2), 395–406 (2013)
Kościelny, J.M.: Fault isolation in industrial processes by dynamic table of states method. Automatica 31(5), 747–753 (1995)
Kościelny, J.M., Bartyś, M., Syfert, M.: Method of multiple fault isolation in large scale systems. IEEE Trans. Control Syst. Technol. 20(5), 1302–1310 (2012)
Ligęza, A., Kościelny, J.M.: A new approach to multiple fault diagnosis. Combination of diagnostic matrices, graphs, algebraic and rule-based models. The case of two-layer models. Int. J. Appl. Math. Comput. Sci. 18(4), 465–476 (2008)
Kościelny, J.M., Syfert, M.: Fuzzy diagnostic reasoning that takes into account the uncertainty of the faults-symptoms relation. Int. J. Appl. Math. Comput. Sci. 16(1), 27–35 (2006)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)
Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Experiments of the Stanford Heuristic Programming Project. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1984)
Shortliffe, E.H., Buchanan, B.G.: A Model of Inexact Reasoning in Medicine. Readings in Uncertain Reasoning, pp. 259–275. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1990)
Cooper, G.F.: The computational complexity of probabilistic inference using Bayesian belief networks (research note). Artif. Intell. 42(2–3), 393–405 (1990)
Piegat, A.: Fuzzy Modelling and Control. Springer, Berlin (2001)
Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modelling and Control. Wiley (1994)
Kościelny, J.: Application of fuzzy logic fault isolation in a three-tank system. IFAC Proc. Volumes (14th World Congress IFAC), 32(2), 7754–7759 (1999)
Kościelny, J., Sędziak, D., Zakroczymski, K.: Fuzzy logic fault isolation in large scale systems. Int. J. Appl. Math. Comput. Sci. 9(3), 637–652 (1999)
Kościelny, J., Syfert, M.: Current diagnostics of power boiler system with use of fuzzy logic. IFAC Proc. Volumes 33(11), 669–674 (2000)
Kościelny, J.M., Syfert, M.: Fuzzy logic application to diagnostic of industrial processes. IFAC Proc. Volumes 36(5), 711–716 (2003)
Sędziak, D.: Methods of fault isolation in industrial processes (in Polish). Ph. D. Thesis, Warsaw University of Technology, Department of Mechatronics (2001)
Syfert, M.: Diagnostics of industrial processes with the use of partial models and fuzzy logic. Ph. D. Thesis, Warsaw University of Technology, Department of Mechatronics (2003)
Sztyber, A., Kościelny, J.M.: Diagnostic reasoning framework combining fuzzy logic and dempster-shafer theory. In: IEEE Xplore Digital Library. IEEE International Conference on Prognostics and Health Management (ICPHM), Ottawa, Ontario (2016)
Kościelny, J.M., Sztyber, A.: Metoda wnioskowania diagnostycznego uwzględniająca niepewności symptomów na drodze fuzji teorii Bayes’a i logiki rozmytej. In: Kowalczuk, W.Z., Domżalski, M. (eds.) Advanced Systems for Automation and Diagnostics, Pomorskie Wydawnictwo Naukowo-Techniczne, pp. 117-128 (2015)
Siljak, D.: Large-Scale Dynamic Systems: Stability and Structure. North Holland, New York (1978)
Boem, F., Ferrari, R.M.G., Parisini, T., Polycarpou, M.M.: Distributed fault diagnosis for nonlinear systems. In: Preprints of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 1089–1094 (2012)
Indra, S., Travé-Massuyés, L., Chanthery, E.: Decentralized diagnosis with isolation on request for spacecraft. In: Preprints of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, vol. 8, no. PART 1, pp. 283–288 (2012)
Kościelny, J.M.: Diagnostics of processes in decentralized structures. Arch. Control Sci. 7(3/4), 181–202 (1998)
Kościelny, J.M., Sikora, A.I.: Dekompozycja złożonych obiektów diagnozowania. Archiwum Automatyki i Telemechaniki 1(1991), 115–131 (1991)
Pulido, B., Zamarre, J.M.: Using structural decomposition methods to design gray-box models for fault diagnosis of complex industrial systems: a beet sugar factory case study. In: First European Conference of the Prognostics and Health Management Society (2012)
Wnuk, P., Kościelny, J.M.: Diagnostic system decomposition with genetic optimization. Pomiary Automatyka Kontrola, Nr 6(2011), 641–647 (2011)
Kościelny, J.M., Sztyber, A.: Decomposition of complex diagnostic systems. In: Preprints of the 10th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 755–762 (2018)
Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49 (1970)
Kościelny, J.M., Bartyś, M., Syfert, M.: Diagnostics of industrial processes in decentralised structures with application of fuzzy logic. IFAC Proc. Volumes (17th World Congress of IFAC), 41(2), 6944–6949 (2008)
Syfert, M., Kościelny, J.M., Bartyś, M.: A fuzzy inference approach to fault diagnosis refinement in decentralized diagnostics. In: Advanced Solutions in Diagnostics and Fault Tolerant Control, pp. 143–154. Springer (2017)
Syfert, M., Bartyś, M., Kościelny, J.M.: Refinement of fuzzy diagnosis in decentralized two-level diagnostic structure. In: Preprints of the 10th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 160–167 (2018)
Kościelny, J.M., Ostasz, A.: Application of causal graph GP for description of diagnosed process. IFAC Proc. Volumes 36(5), 801–806 (2003)
Sztyber, A.: Sensor placement for industrial process diagnosis using graph of a process. Ph. D. Thesis, Warsaw University of Technology, Department of Mechatronics (2015)
Kościelny, J.M., Syfert, M., Wnuk, P.: The idea of on-line diagnostics as a method of cyberattack. In: Advanced Solutions in Diagnostics and Fault Tolerant Control, Springer, pp. 449–457 (2017)
Kościelny, J.M., Sztyber, A., Syfert, M.: Graph description of the process and its applications. In: Trends in Advanced Intelligent Control, Optimization and Automation, pp. 550–559. Springer (2017)
Chang, C.C., Yu, C.C.: On-line fault diagnosis using the signed directed graph. Ind. Eng. Chem. Res. 29(7), 1290–1299 (1990)
Kramer, B.L., Palowitch, M.A.: A rule-based approach to fault diagnosis using the signed directed graph. AIChE J. 33(7), 1067–1078 (1987)
Shiozaki, J., Matsuyama, H., Tano, K., O’Shima, E.: Fault diagnosis of chemical processes by the use of signed directed graphs: extension to five-range patterns of abnormality. Int. Chem. Eng. 37(4), 651–659 (1985)
Bouamama, B.O., Harabia, R.E., Abdelkrimb, M., Gayedb, M.B.: Bond graphs for the diagnosis of chemical processes. Comput. Chem. Eng. 36, 301–324 (2012)
Samantaray, A., Medjaherb, K., Bouamama, B.O., Staroswiecki, M., Dauphin-Tanguy, G.: Diagnostic bond graphs for online fault detection and isolation. Simul. Model. Pract. Theory 14(3), 237–262 (2006)
de Flaugergues, V., Cocquempot, V., Bayart, M., Pengov, M.: Structural analysis for FDI: a modified, invertibility-based canonical decomposition. In: 20th International Workshop on Principles of Diagnosis, pp. 59–66 (2009)
Düstegör, D., Frisk, E., Cocquempot, V., Krysander, M., Staroswiecki, M.: Structural analysis of fault isolability in the damadics benchmark. Control Eng. Pract. 14, 597–608 (2006)
Kościelny, J.M.: Diagnostyka on-line aparatury technologicznej i układów automatyki metodą DTS—dynamicznych tablic stanu. Archiwum Automatyki i Telemechaniki, 4/1988, pp. 593–606 (1988)
Kościelny, J.M., Pieniążek, A.: Algorithm of fault detection and isolation applied for evaporation unit in sugar factory. Control Eng. Pract. 2(4), 649–657 (1994)
Syfert, M., Rzepiejewski, P., Wnuk, P., Kościelny, J.M.: Current diagnostics of the evaporation station. IFAC Proc. Volumes 38(1), 365–370 (2005)
Kościelny, J.M., Leszczyński, M., Gąsecki, A., Syfert, M.: Monitoring of the degree of coking in H-Oil plant. IFAC Proc. Volumes 42(8), 1258–1263 (2009)
Kościelny, J.M., Syfert, M., Leszczyński, M., Gąsecki, A.: Pilot tests of the advanced system of process diagnostics in PKN ORLEN. Pomiary Automatyka Kontrola 55(3/2009), 136–140 (2009)
Syfert, M., Wnuk, P., Kościelny, J.M.: DiaSter—intelligent system for diagnostics and automatic control support of industrial processes. JAMRIS—J. Autom., Mob. Rob. Intell. Syst. 5(4), 41–46 (2011)
Pawlak, M., Kościelny, J.M., Wasiewicz, P.: Method of increasing the reliability and safety of the processes through the use of fault tolerant control systems. Eksploatacja i Niezawodność—Maintenance and Reliability 17(3), 398–407 (2015)
Kościelny, J.M., Bartyś, M.: The requirements for a new layer in the industrial safety systems. In: 9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Safeprocess 2015, pp. 1333–1338. Arts de Métiers ParisTech, Paris, France (2015)
Kościelny, J., Syfert, M., Fajdek, B., Kozak, A.: The application of a graph of a process in HAZOP analysis in accident prevention system. J. Loss Prev. Process Ind. 50(2017), 55–66 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Kościelny, J.M. (2021). On-line Diagnostics of Large-Scale Industrial Processes. In: Kulczycki, P., Korbicz, J., Kacprzyk, J. (eds) Automatic Control, Robotics, and Information Processing. Studies in Systems, Decision and Control, vol 296. Springer, Cham. https://doi.org/10.1007/978-3-030-48587-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-48587-0_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-48586-3
Online ISBN: 978-3-030-48587-0
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)